, Volume 70, Issue 9, pp 1659–1669 | Cite as

Integrated Computational Materials Engineering in Solar Plants: The Virtual Materials Design Project

  • Francisco Montero-Chacón
  • Michele Chiumenti
  • Javier Segurado
  • Manuel Doblaré
ICME - 10 Years Later: Success and Challenges


The high temperatures required for efficient operation of solar thermal power plants constitutes one of the major challenges of this technology. Gaining insight into materials behavior at very high temperatures is critical to improve their techno-economic feasibility. Standard material characterization approaches become inefficient, as extensive testing campaigns are required. We propose a multiscale–multiphysical approach that accounts for materials composition to (1) predict the behavior of both Inconel 625 and new solar salts, and (2) assess the thermomechanical performance of key components. We carried out a complete thermoelastic multiscale analysis that spans six time and length scales in a single simulation platform, combining discrete and continuum tools (from quantum to continuum mechanics). These applications show the substantial economic benefits that may be achieved by an ICME approach in the energy sector, reducing the cost of prototypes while decreasing development times and maintenance costs due to a better understanding of materials behavior.



The authors gratefully acknowledge the funding provided by Abengoa S.A. within the framework of the VMD project. The authors would also like to acknowledge all the researchers that collaborated in this project during the 2012–2016 period.


  1. 1.
    F. Creutzig, P. Agoston, J.C. Goldschmidt, G. Luderer, G. Nemet, and R.C. Pietzcker, Nat. Energy 2, 17140 (2017).CrossRefGoogle Scholar
  2. 2.
    C. Parrado, A. Girard, F. Simon, and E. Fuentealba, Energy 94, 422–430 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Zhang, W. Kong, T. Tan, and J. Baeyens, Energy 139, 52–64 (2017).CrossRefGoogle Scholar
  4. 4.
    National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Academies Press, 2008).Google Scholar
  5. 5.
    W.A. Curtin, A. Needleman, M. Ortiz, R. Phillips, E. Kaxiras, G. Cedar, and D. Farkas, Virtual Design and Testing of Materials: A Multiscale Approach (Providence, RI: Brown University, 2006).Google Scholar
  6. 6.
    National Nuclear Security Administration, Program Statement for the Advanced Simulation and Computing (ASC) Predictive Science Academic Alliance Program (PSAAP) (2008).Google Scholar
  7. 7.
    J. Allison, D. Backman, and L. Christodoulou, JOM 58, 25–27 (2006).CrossRefGoogle Scholar
  8. 8.
    M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science (New York: Wiley, 2012).CrossRefGoogle Scholar
  9. 9.
    J. Llorca and C. González, Virtual mechanical testing of composites: from materials to components, in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), The Minerals, Metals & Materials Society (TMS) (New York: Wiley, 2011), pp. 121–127.Google Scholar
  10. 10.
    J. LLorca, C. González, J.M. Molina-Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. Rodríguez, S. Sádaba, R. Muñoz, and L. Canal, Adv. Mater. 23, 5130–5147 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Ball, T. Limer, and R. Bridges, A case study on the application of ICME in aircraft design, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences (2012).Google Scholar
  12. 12.
    R.J. Glamm, D.M. Rosenbladt, E.D. Pripstein, and J.D. Cotton, Recent progress in implementation of ICME for metallic materials in the airframe industry, in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, (AIAA 2015-0199).Google Scholar
  13. 13.
    M. Sangid, J.F. Matlik, A. Keskin, B.H. Thacker, B.J. Bichon, D.L. Ball, S.P. Engelstad, C. Ward, V. Venkatesh, H.A. Kim, V. Saraf, and R. Gorham, Integrating ICME practices into design systems and structural analysis, in 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-0874).Google Scholar
  14. 14.
    J. Gong, D. Snyder, T. Kozmel, C. Kern, J.E. Saal, I. Berglund, J. Sebastian, and G. Olson, JOM 69, 880 (2017).CrossRefGoogle Scholar
  15. 15.
    D.G. Backman, D.Y. Wei, D.D. Whitis, M.B. Buczek, P.M. Finnigan, and D. Gao, JOM 58, 36–41 (2006).CrossRefGoogle Scholar
  16. 16.
    B. Cowles, D. Backman, and R. Dutton, Integr. Mater. Manuf. Innov. 1, 2 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Allison, M. Li, C. Wolverton, and X. Su, JOM 58, 28–35 (2006).CrossRefGoogle Scholar
  18. 18.
    V. Savic, L. Hector, H. Ezzat, A. Sachdev, J. Quinn, R. Krupitzer, and X. Sun, SAE Tech Pap, 2015-01-0459 (2015).Google Scholar
  19. 19.
    A. Shaik, Y. Kalariya, R. Pathan, and A. Salvi, ICME based hierarchical design using composite materials for automotive structures, in Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), The Minerals, Metals & Materials Series, ed. P. Mason, et al. (Springer, Cham, 2017).Google Scholar
  20. 20.
    W.J. Joost and P.E. Krajewski, Scr. Mater. 128, 107–112 (2017).CrossRefGoogle Scholar
  21. 21.
    W.J. Joost, JOM 64, 1032–1038 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Xu, Y. Li, and D. Zeng, SAE Int. J. Mater. Manuf. 10, 274–281 (2017).CrossRefGoogle Scholar
  23. 23.
    L. Robinson, JOM 63, 30–34 (2011).CrossRefGoogle Scholar
  24. 24.
    S.J. Zinkle, K.A. Terrani, and L.L. Snead, Curr. Opin. Solid State Mater. Sci. 20, 401–410 (2016).CrossRefGoogle Scholar
  25. 25.
    A. Cruzado, B. Gan, M. Jimenez, D. Barba, K. Ostolaza, A. Linaza, J.M. Molina-Aldareguia, J. Llorca, and J. Segurado, Acta Mater. 98, 242–253 (2015).CrossRefGoogle Scholar
  26. 26.
    Abengoa Research, Abengoa Research Strategic Research Agenda, Abengoa, Seville, Spain, unpublished research (2012).Google Scholar
  27. 27.
    J. Fish, Multiscale Methods: Bridging the Scales in Science and Engineering (Oxford: Oxford University Press, 2010).zbMATHGoogle Scholar
  28. 28.
    F. Feyel and J.L. Chaboche, Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000).CrossRefGoogle Scholar
  29. 29.
    J. Segurado, R.A. Lebensohn, J. LLorca, and C.N. Tomé, Int. J. Plast 28, 124–140 (2012).CrossRefGoogle Scholar
  30. 30.
    F. Montero-Chacón, S. Zaghi, R. Rossi, E. García-Pérez, I. Heras-Pérez, X. Martínez, S. Oller, and M. Doblaré, Finite Elem. Anal. Des. 127, 31–43 (2017).CrossRefGoogle Scholar
  31. 31.
    J.M. Ortiz-Roldan, A.R. Ruiz-Salvador, S. Calero, F. Montero-Chacón, E. García-Pérez, J. Segurado, I. Martin-Bragado, and S. Hamad, Phys. Chem. Chem. Phys. 17, 15912–15920 (2015).CrossRefGoogle Scholar
  32. 32.
    J.M. Ortiz-Roldan, G. Esteban-Manzanares, S. Lucarini, S. Calero, J. Segurado, A.R. Ruiz-Salvador, S. Hamad, and F. Montero-Chacón, Fitting electron density as a physically sound basis for the development of interatomic potentials of complex alloys, unpublished research (2017).Google Scholar
  33. 33.
    W. Chen, G. Xu, I. Martin-Bragado, and Y. Cui, Solid State Sci. 41, 19–24 (2015).CrossRefGoogle Scholar
  34. 34.
    ASTM B444-16e1, Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube (West Conshohocken, PA: ASTM International, 2016).Google Scholar
  35. 35.
    E. Shapiro and G.E. Dieter, Metall. Trans. 1, 1711–1719 (1970).CrossRefGoogle Scholar
  36. 36.
    J.P. Pedron and A. Pineau, Mater. Sci. Eng. 56, 143–156 (1982).CrossRefGoogle Scholar
  37. 37.
    C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Mater. Sci. Eng., A 510, 289–294 (2009).CrossRefGoogle Scholar
  38. 38.
    M. Prieto-Depedro, I. Martin-Bragado, and J. Segurado, Int. J. Plast 68, 98–110 (2015).CrossRefGoogle Scholar
  39. 39.
    L.P. Kadanoff, J. Stat. Phys. 137, 777–797 (2009).MathSciNetCrossRefGoogle Scholar
  40. 40.
    H. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531–618 (1973).CrossRefGoogle Scholar
  41. 41.
    G. Martin, N. Ochoa, K. Sa, E. Herv-Luanco, and G. Cailletaud, Int. J. Solids Struct. 51, 1175–1187 (2014).CrossRefGoogle Scholar
  42. 42.
    T. Luther and C. Könke, Eng. Fract. Mech. 76, 2332–2343 (2009).CrossRefGoogle Scholar
  43. 43.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Vol. 131 (Cambridge: Cambridge University Press, 2007).CrossRefzbMATHGoogle Scholar
  44. 44.
    J.I. Beltrán, J. Wang, F. Montero-Chacón, and Y. Cui, Sol. Energy 155, 154–166 (2017).CrossRefGoogle Scholar
  45. 45.
    J. Hafner, J. Comput. Chem. 29, 2044–2078 (2008).CrossRefGoogle Scholar
  46. 46.
    J.D. Gale, J. Chem. Soc., Faraday Trans. 93, 629–637 (1997).CrossRefGoogle Scholar
  47. 47.
    S. Plimpton, P. Crozier, and A. Thompson, Sandia Natl. Lab. 18, 43 (2007).Google Scholar
  48. 48.
    CIMNE. GiD-LAMMPS: GiD Problem Type for LAMMPS Molecular Dynamics Code, unpublished research (2015).Google Scholar
  49. 49.
    A. Martin-Bragado, G. Rivera, J.L. Valles, and M.J. Gomez-Selles, Caturla. Comput. Phys. Commun. 184, 2703–2710 (2013).CrossRefGoogle Scholar
  50. 50.
    S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, and W.A. Oates, Calphad 26, 175–188 (2002).CrossRefGoogle Scholar
  51. 51.
    IMDEA Materials, Capsul (2015). Accessed 1 April 2018.
  52. 52.
    P. Dadvand, J. Mora, C. González, A. Arraez, P. Ubach, and E. Oñate. Kratos: an object-oriented environment for development of multi-physics analysis software, in WCCM V, Fifth World Congress on Computational Mechanics (2002).Google Scholar
  53. 53.
    Simulia, ABAQUS 6.13 User’s Manual (Providence, RI: Dassault Systems, 2013).Google Scholar
  54. 54.
    R. Ribó, M. Pasenau, E. Escolano, J. Pérez, A. Coll, and A. Melendo, GiD The Personal Pre and Postprocessor. Reference Manual, CIMNE, Barcelona, Spain, unpublised research (2006).Google Scholar
  55. 55.
    C. Rycroft, Voro++: a three-dimensional Voronoi cell library in C++ (2009).Google Scholar
  56. 56.
    M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3, 5 (2014).CrossRefGoogle Scholar
  57. 57.
    MATLAB 2014b (The Mathworks, Inc., Natick, MA).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Dpto. IngenieríaUniversidad Loyola AndalucíaSevilleSpain
  2. 2.International Center for Numerical Methods in Engineering (CIMNE)Technical University of Catalonia (UPC)BarcelonaSpain
  3. 3.IMDEA Materials InstituteGetafe, MadridSpain
  4. 4.Department of Materials SciencePolytechnic University of MadridMadridSpain
  5. 5.Aragon Institute of Engineering Research (I3A)University of ZaragozaSaragossaSpain

Personalised recommendations