Advertisement

JOM

, Volume 70, Issue 7, pp 1081–1087 | Cite as

In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film

  • Qianying Guo
  • Gregory B. Thompson
Mechanical Behavior at the Nanoscale
  • 99 Downloads

Abstract

In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.

Notes

Acknowledgements

The authors gratefully acknowledge ARO W911NF-17-1-0528, Dr. Michael Bakas Program Manager. The Bruker PI-95 indenter was acquired through the NSF-DMR-1531722.

References

  1. 1.
    M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
  2. 2.
    L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han, Nature Commun. 5, 4402 (2014).CrossRefGoogle Scholar
  3. 3.
    T. Rupert, D. Gianola, Y. Gan, and K. Hemker, Science 326, 1686 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Ojima, Y. Adachi, S. Suzuki, and Y. Tomota, Acta Mater. 59, 4177 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Ruggles, D. Fullwood, and J. Kysar, Int. J. Plast 76, 231 (2016).CrossRefGoogle Scholar
  6. 6.
    P.J. Hurley and F.J. Humphreys, Acta Mater. 51, 1087 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Legros, D.S. Gianola, and K.J. Hemker, Acta Mater. 56, 3380 (2008).CrossRefGoogle Scholar
  9. 9.
    S.P. Deshmukh, R.S. Mishra, and I.M. Robertson, Mater. Sci. Eng. A 527, 2390 (2010).CrossRefGoogle Scholar
  10. 10.
    N. Li, J. Wang, A. Misra, and J.Y. Huang, Microsc. Microanal. 18, 1155 (2012).CrossRefGoogle Scholar
  11. 11.
    E. Hintsala, D. Kiener, J. Jackson, and W.W. Gerberich, Exp. Mech. 55, 1681 (2015).CrossRefGoogle Scholar
  12. 12.
    Q. Yu, J. Sun, J.W. Morris, and A.M. Minor, Scr. Mater. 69, 57 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Avilov, K. Kuligin, S. Nicolopoulos, M. Nickolskiy, K. Boulahya, J. Portillo, G. Lepeshov, B. Sobolev, J.P. Collette, N. Martin, A.C. Robins, and P. Fischione, Ultramicroscopy 107, 431 (2007).CrossRefGoogle Scholar
  14. 14.
    P. Moeck, S. Rouvimov, E. Rauch, M. Véron, H. Kirmse, I. Häusler, W. Neumann, D. Bultreys, Y. Maniette, and S. Nicolopoulos, Cryst. Res. Technol. 46, 589 (2011).CrossRefGoogle Scholar
  15. 15.
    E. Rauch and M. Véron, Mater. Charact. 98, 1 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Roqué Rosell, J. Portillo Serra, T. Aiglsperger, S. Plana-Ruiz, T. Trifonov, and J.A. Proenza, J. Cryst. Growth 483, 228 (2018).Google Scholar
  17. 17.
    P.K. Suri, J.E. Nathaniel, C.M. Barr, J.K. Baldwin, K. Hattar, and M.L. Taheri, Microsc. Microanal. 23, 2236 (2017).CrossRefGoogle Scholar
  18. 18.
    I. Ghamarian, Y. Liu, P. Samimi, and P.C. Collins, Acta Mater. 79, 203 (2014).CrossRefGoogle Scholar
  19. 19.
    D.C. Bufford, D. Stauffer, W.M. Mook, S. Syed Asif, B.L. Boyce, and K. Hattar, Nano Lett. 16, 4946 (2016).CrossRefGoogle Scholar
  20. 20.
    A. Kobler, A. Kashiwar, H. Hahn, and C. Kübel, Ultramicroscopy 128, 68 (2013).CrossRefGoogle Scholar
  21. 21.
    A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Acta Mater. 55, 4015 (2007).CrossRefGoogle Scholar
  22. 22.
    L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).CrossRefGoogle Scholar
  23. 23.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
  24. 24.
    G.B. Thompson, M.K. Miller, and H.L. Fraser, Ultramicroscopy 100, 25 (2004).CrossRefGoogle Scholar
  25. 25.
    P.J. Felfer, T. Alam, S.P. Ringer, and J.M. Cairney, Microsc. Res. Tech. 75, 484 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Ciston, B. Deng, L.D. Marks, C.S. Own, and W. Sinkler, Ultramicroscopy 108, 514 (2008).CrossRefGoogle Scholar
  27. 27.
    D.B. Williams and C.B. Carter, Transmission Electron Microscopy, 2nd ed. (New York: Springer, 2009), pp. 389–416.CrossRefGoogle Scholar
  28. 28.
    Z. Basinski, A. Korbel, and S. Basinski, Acta Metall. 28, 191 (1980).CrossRefGoogle Scholar
  29. 29.
    Q. Guo, Y.S. Chun, J.H. Lee, Y.-U. Heo, and C.S. Lee, Met. Mater. Int. 20, 1043 (2014).CrossRefGoogle Scholar
  30. 30.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).CrossRefGoogle Scholar
  31. 31.
    K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).CrossRefGoogle Scholar
  32. 32.
    C.A. Schuh, M. Kumar, and W.E. King, J. Mater. Sci. 40, 847 (2005).CrossRefGoogle Scholar
  33. 33.
    A.C. Leff, C.R. Weinberger, and M.L. Taheri, Ultramicroscopy 153, 9 (2015).CrossRefGoogle Scholar
  34. 34.
    D. Cooper, T. Denneulin, N. Bernier, A. Béché, and J.-L. Rouvière, Micron 80, 145 (2016).CrossRefGoogle Scholar
  35. 35.
    A. Minor, E. Lilleodden, E. Stach, and J. Morris, J. Mater. Res. 19, 176 (2004).CrossRefGoogle Scholar
  36. 36.
    F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Acta Mater. 50, 3957 (2002).CrossRefGoogle Scholar
  37. 37.
    D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press, 2009), pp. 111–179.Google Scholar
  38. 38.
    Y. Zhang, G.J. Tucker, and J.R. Trelewicz, Acta Mater. 131, 39 (2017).CrossRefGoogle Scholar
  39. 39.
    R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).CrossRefGoogle Scholar
  40. 40.
    C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe, Acta Mater. 71, 333 (2014).CrossRefGoogle Scholar
  41. 41.
    Z. Hu, M. Farahikia, and F. Delfanian, J. Compos. Mater. 49, 3359 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations