Skip to main content
Log in

In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film

  • Mechanical Behavior at the Nanoscale
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Acta Mater. 52, 5381 (2004).

    Article  Google Scholar 

  2. L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han, Nature Commun. 5, 4402 (2014).

    Article  Google Scholar 

  3. T. Rupert, D. Gianola, Y. Gan, and K. Hemker, Science 326, 1686 (2009).

    Article  Google Scholar 

  4. M. Ojima, Y. Adachi, S. Suzuki, and Y. Tomota, Acta Mater. 59, 4177 (2011).

    Article  Google Scholar 

  5. T. Ruggles, D. Fullwood, and J. Kysar, Int. J. Plast 76, 231 (2016).

    Article  Google Scholar 

  6. P.J. Hurley and F.J. Humphreys, Acta Mater. 51, 1087 (2003).

    Article  Google Scholar 

  7. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).

    Article  Google Scholar 

  8. M. Legros, D.S. Gianola, and K.J. Hemker, Acta Mater. 56, 3380 (2008).

    Article  Google Scholar 

  9. S.P. Deshmukh, R.S. Mishra, and I.M. Robertson, Mater. Sci. Eng. A 527, 2390 (2010).

    Article  Google Scholar 

  10. N. Li, J. Wang, A. Misra, and J.Y. Huang, Microsc. Microanal. 18, 1155 (2012).

    Article  Google Scholar 

  11. E. Hintsala, D. Kiener, J. Jackson, and W.W. Gerberich, Exp. Mech. 55, 1681 (2015).

    Article  Google Scholar 

  12. Q. Yu, J. Sun, J.W. Morris, and A.M. Minor, Scr. Mater. 69, 57 (2013).

    Article  Google Scholar 

  13. A. Avilov, K. Kuligin, S. Nicolopoulos, M. Nickolskiy, K. Boulahya, J. Portillo, G. Lepeshov, B. Sobolev, J.P. Collette, N. Martin, A.C. Robins, and P. Fischione, Ultramicroscopy 107, 431 (2007).

    Article  Google Scholar 

  14. P. Moeck, S. Rouvimov, E. Rauch, M. Véron, H. Kirmse, I. Häusler, W. Neumann, D. Bultreys, Y. Maniette, and S. Nicolopoulos, Cryst. Res. Technol. 46, 589 (2011).

    Article  Google Scholar 

  15. E. Rauch and M. Véron, Mater. Charact. 98, 1 (2014).

    Article  Google Scholar 

  16. J. Roqué Rosell, J. Portillo Serra, T. Aiglsperger, S. Plana-Ruiz, T. Trifonov, and J.A. Proenza, J. Cryst. Growth 483, 228 (2018).

  17. P.K. Suri, J.E. Nathaniel, C.M. Barr, J.K. Baldwin, K. Hattar, and M.L. Taheri, Microsc. Microanal. 23, 2236 (2017).

    Article  Google Scholar 

  18. I. Ghamarian, Y. Liu, P. Samimi, and P.C. Collins, Acta Mater. 79, 203 (2014).

    Article  Google Scholar 

  19. D.C. Bufford, D. Stauffer, W.M. Mook, S. Syed Asif, B.L. Boyce, and K. Hattar, Nano Lett. 16, 4946 (2016).

    Article  Google Scholar 

  20. A. Kobler, A. Kashiwar, H. Hahn, and C. Kübel, Ultramicroscopy 128, 68 (2013).

    Article  Google Scholar 

  21. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Acta Mater. 55, 4015 (2007).

    Article  Google Scholar 

  22. L.A. Giannuzzi and F.A. Stevie, Micron 30, 197 (1999).

    Article  Google Scholar 

  23. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  24. G.B. Thompson, M.K. Miller, and H.L. Fraser, Ultramicroscopy 100, 25 (2004).

    Article  Google Scholar 

  25. P.J. Felfer, T. Alam, S.P. Ringer, and J.M. Cairney, Microsc. Res. Tech. 75, 484 (2012).

    Article  Google Scholar 

  26. J. Ciston, B. Deng, L.D. Marks, C.S. Own, and W. Sinkler, Ultramicroscopy 108, 514 (2008).

    Article  Google Scholar 

  27. D.B. Williams and C.B. Carter, Transmission Electron Microscopy, 2nd ed. (New York: Springer, 2009), pp. 389–416.

    Book  Google Scholar 

  28. Z. Basinski, A. Korbel, and S. Basinski, Acta Metall. 28, 191 (1980).

    Article  Google Scholar 

  29. Q. Guo, Y.S. Chun, J.H. Lee, Y.-U. Heo, and C.S. Lee, Met. Mater. Int. 20, 1043 (2014).

    Article  Google Scholar 

  30. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  31. K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).

    Article  Google Scholar 

  32. C.A. Schuh, M. Kumar, and W.E. King, J. Mater. Sci. 40, 847 (2005).

    Article  Google Scholar 

  33. A.C. Leff, C.R. Weinberger, and M.L. Taheri, Ultramicroscopy 153, 9 (2015).

    Article  Google Scholar 

  34. D. Cooper, T. Denneulin, N. Bernier, A. Béché, and J.-L. Rouvière, Micron 80, 145 (2016).

    Article  Google Scholar 

  35. A. Minor, E. Lilleodden, E. Stach, and J. Morris, J. Mater. Res. 19, 176 (2004).

    Article  Google Scholar 

  36. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Acta Mater. 50, 3957 (2002).

    Article  Google Scholar 

  37. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press, 2009), pp. 111–179.

    Google Scholar 

  38. Y. Zhang, G.J. Tucker, and J.R. Trelewicz, Acta Mater. 131, 39 (2017).

    Article  Google Scholar 

  39. R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).

    Article  Google Scholar 

  40. C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe, Acta Mater. 71, 333 (2014).

    Article  Google Scholar 

  41. Z. Hu, M. Farahikia, and F. Delfanian, J. Compos. Mater. 49, 3359 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge ARO W911NF-17-1-0528, Dr. Michael Bakas Program Manager. The Bruker PI-95 indenter was acquired through the NSF-DMR-1531722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Thompson, G.B. In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film. JOM 70, 1081–1087 (2018). https://doi.org/10.1007/s11837-018-2854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2854-8

Navigation