Skip to main content
Log in

A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

  • Mechanical Behavior at the Nanoscale
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Hoffmann and C. Zheng, J. Phys. Chem. 89, 4175 (1985).

    Article  Google Scholar 

  2. P.C. Canfield, S.L. Bud’ko, N. Ni, A. Kreyssig, A.I. Goldman, R.J. McQueeney, M.S. Torikachvili, D.N. Argyriou, G. Luke, and W. Yu, Physica C 469, 404 (2009).

    Article  Google Scholar 

  3. N. Ni, S. Nandi, A. Kreyssig, A.I. Goldman, E.D. Mun, S.L. Bud’ko, and P.C. Canfield, Phys. Rev. B 78, 014523 (2008).

    Article  Google Scholar 

  4. T. Park, E. Park, H. Lee, T. Klimczuk, E.D. Bauer, F. Ronning, and J.D. Thompson, J. Phys.: Condens. Matter 20, 322204 (2008).

    Google Scholar 

  5. J. Zhao, D.T. Adroja, D.-X. Yao, R. Bewley, S. Li, X.F. Wang, G. Wu, X.H. Chen, J. Hu, and P. Dai, Nat. Phys. 5, 555 (2009).

    Article  Google Scholar 

  6. K. Kudo, K. Iba, M. Takasuga, Y. Kitahama, J. Matsumura, M. Danura, Y. Nogami, and M. Nohara, Sci. Rep. 3, 1478 (2013).

    Article  Google Scholar 

  7. A.I. Goldman, A. Kreyssig, K. Prokeš, D.K. Pratt, D.N. Argyriou, J.W. Lynn, S. Nandi, S.A.J. Kimber, Y. Chen, Y.B. Lee, G. Samolyuk, J.B. Leão, S.J. Poulton, S.L. Bud’ko, N. Ni, P.C. Canfield, B.N. Harmon, and R.J. McQueeney, Phys. Rev. B 79, 024513 (2009).

    Article  Google Scholar 

  8. J.T. Sypek, H. Yu, K.J. Dusoe, G. Drachuck, H. Petal, A.M. Giroux, A.I. Goldman, A. Kreyssig, P.C. Canfield, S.L. Bud’ko, C.R. Weinberger, and S.-W. Lee, Nat. Commun. 8, 1083 (2017).

    Article  Google Scholar 

  9. P.C. Canfield and Z. Fisk, Philos. Mag. B 65, 1117 (1992).

    Article  Google Scholar 

  10. H. Yu, G.B. Thompson, and C.R. Weinberger, Extreme Mech. Lett. 17, 1 (2017).

    Article  Google Scholar 

  11. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  12. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  13. G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  14. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  15. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  16. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  Google Scholar 

  17. P.E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  19. G.B. de Souza, F.C. Serbena, A.R. Jurelo, S.A. da Silva, L.B.L.G. Pinheiro, F.T. Dias, A. Mikowski, S.L. Bud’ko, A. Thaler, and P.C. Canfield, J. Mater. Res. 30, 1413 (2016).

    Article  Google Scholar 

  20. J.T. Sypek, C.R. Weinberger, S. Vijayan, M. Aindow, S.L. Bud’ko, P.C. Canfield, and S.-W. Lee, Scr. Mater. 141, 10 (2017).

    Article  Google Scholar 

  21. H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr, Scr. Mater. 57, 397 (2007).

    Article  Google Scholar 

  22. H. Bei, S. Shim, G.M. Pharr, and E.P. George, Acta Mater. 56, 4762 (2008).

    Article  Google Scholar 

  23. U. Ramamurty and J.-I. Jang, Cryst. Eng. Comm. 16, 12–23 (2014).

    Article  Google Scholar 

  24. S. Bhagavat and I. Kao, Mater. Sci. Eng., A 393, 327–331 (2005).

    Article  Google Scholar 

  25. M.A. Lodes, A. Hartmaier, M. Göken, and K. Durst, Acta Mater. 59, 4264–4273 (2011).

    Article  Google Scholar 

  26. R.D. Jamison and Y.L. Shen, Surf. Coat. Technol. 303, 3 (2016).

    Article  Google Scholar 

  27. T.A. Prikhna, S.N. Dub, A.V. Starostina, M.V. Karpets, T. Cabiosh, and P. Chartier, J. Superhard Mater. 34, 102 (2012).

    Article  Google Scholar 

  28. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 62 (1992).

    Google Scholar 

Download references

Acknowledgements

K.G. Frawley, J.T. Sypek, and S.-W Lee acknowledge support from the UConn Start-up Funding and the Early Career Faculty Grant from NASA’s Space Technology Research Grants Program. SEM, FIB and TEM experiments were performed using the facilities in the UConn/Thermo Fisher Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA). Work by P.C. Canfield was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Their research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder and Colorado State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frawley, K.G., Bakst, I., Sypek, J.T. et al. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2. JOM 70, 1074–1080 (2018). https://doi.org/10.1007/s11837-018-2851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2851-y

Navigation