, Volume 70, Issue 6, pp 924–928 | Cite as

Probing the Evolution of Retained Austenite in TRIP Steel During Strain-Induced Transformation: A Multitechnique Investigation

  • G. N. Haidemenopoulos
  • M. Constantinou
  • H. Kamoutsi
  • D. Krizan
  • I. Bellas
  • L. Koutsokeras
  • G. Constantinides
Shaping & Forming of Advanced High-Strength Steels


X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0–22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.



The authors would like to acknowledge the Research Unit for Nanostructured Materials Systems (RUNMS) for providing instrumentation used in this study. The continued support of Cyprus University of Technology towards RUNMS is gratefully acknowledged.

Supplementary material

11837_2018_2832_MOESM1_ESM.pdf (392 kb)
Supplementary material 1 (PDF 395 kb)


  1. 1.
    R. Zhu, S. Li, M. Song, I. Karaman, and R. Arroyave, Mater. Sci. Eng. A 569, 137 (2013).CrossRefGoogle Scholar
  2. 2.
    J.H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H.K.D.H. Bhadeshia, and D.W. Suh, Scr. Mater. 68, 933 (2013).CrossRefGoogle Scholar
  3. 3.
    C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, and C. Garcia De Andres, J. Mater. Sci. 44, 4617 (2009).CrossRefGoogle Scholar
  4. 4.
    Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin, and R.D.K. Misra, Scr. Mater. 68, 865 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, and R.D.K. Misra, Mater. Sci. Eng. A 583, 1 (2013).CrossRefGoogle Scholar
  6. 6.
    G.N. Haidemenopoulos, A.T. Kermanidis, C. Malliaros, H.H. Dickert, P. Kucharzyk, and W. Bleck, Mater. Sci. Eng. A 573, 7 (2013).CrossRefGoogle Scholar
  7. 7.
    R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, and H.J. Maier, Acta Mater. 60, 3022 (2012).CrossRefGoogle Scholar
  8. 8.
    L. Samek, E. De Moor, J. Penning, and B.C. De Cooman, Metall. Mater. Trans. A 37, 109 (2006).CrossRefGoogle Scholar
  9. 9.
    S.M.C. Van Bohemen, Scr. Mater. 75, 22 (2014).CrossRefGoogle Scholar
  10. 10.
    Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang, Mater. Sci. Eng. A 578, 370 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Lee, S.J. Lee, and B.C. De Cooman, Scr. Mater. 66, 832 (2012).CrossRefGoogle Scholar
  12. 12.
    G.N. Haidemenopoulos, N. Aravas, and I. Bellas, Mater. Sci. Eng. A 615, 416 (2014).CrossRefGoogle Scholar
  13. 13.
    G.K. Tirumalasetty, M.A. Van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen, Scr. Mater. 71, 29 (2014).CrossRefGoogle Scholar
  14. 14.
    S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas, and F.G. Caballero, Scr. Mater. 69, 777 (2013).CrossRefGoogle Scholar
  15. 15.
    B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong, Scr. Mater. 69, 215 (2013).CrossRefGoogle Scholar
  16. 16.
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater. 68, 321 (2013).CrossRefGoogle Scholar
  17. 17.
    N.H. Van Dijk, L. Zhao, M.T. Rekveldt, H. Fredrikze, O. Tegus, E. Brück, J. Sietsma, and S. Van Der Zwaag, Phys. B Condens. Matter 350, 464 (2004).Google Scholar
  18. 18.
    R.H.E.Leunis, D. Hanlon, A. Rijkenberg, C. Ascott, and J. Drillet, Quantitative Phase Analysis of Multiphase Steels, Final Report (2006).Google Scholar
  19. 19.
    A.S. Zens, T. Appel, J.A.C. Broekaert, and F. Friedel, Int. J. Mater. Res. 97, 1158 (2006).CrossRefGoogle Scholar
  20. 20.
    L.Q. Guo, M.C. Lin, L.J. Qiao, and A.A. Volinsky, Appl. Surf. Sci. 287, 499 (2013).CrossRefGoogle Scholar
  21. 21.
    A.D. Warren, R.L. Harniman, A.M. Collins, S.A. Davis, C.M. Younes, P.E.J. Flewitt, and T.B. Scott, Ultramicroscopy 148, 1 (2015).CrossRefGoogle Scholar
  22. 22.
    F.A. Ferri, M.D.A. Perreira-da-Silva, and E. Marega, Jr, Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, ed. by V. Bellitto (InTech, 2012), p. 268.Google Scholar
  23. 23.
    K.R. Gadelrab, G. Li, M. Chiesa, and T. Souier, J. Mater. Res. 27, 1573 (2012).CrossRefGoogle Scholar
  24. 24.
    S.M. Gheno, F.S. Santos, and S.E. Kuri, J. Appl. Phys. 103, 53906 (2008).CrossRefGoogle Scholar
  25. 25.
    Q. Furnemont, M. Kempf, P.J. Jacques, M. Goken, and F. Delannay, Mater. Sci. Eng. A 328, 26 (2002).CrossRefGoogle Scholar
  26. 26.
    D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2011).Google Scholar
  27. 27.
    W.C. Jeong, D. Matlock, and G. Krauss, Mater. Sci. Eng. A 165, 1 (1993).CrossRefGoogle Scholar
  28. 28.
    S. Turteltaub and A.S.J. Suiker, Int. J. Solids Struct. 43, 7322 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
  2. 2.Department of Mechanical EngineeringUniversity of ThessalyVólosGreece
  3. 3.Department of Mechanical Engineering and Materials Science and EngineeringCyprus University of TechnologyLimassolCyprus
  4. 4.Research Unit for Nanostructured Materials SystemsCyprus University of TechnologyLimassolCyprus
  5. 5.Research and Development Department, Business Unit CoilVoestalpine Stahl GmbHLinzAustria

Personalised recommendations