Advertisement

JOM

, Volume 70, Issue 6, pp 817–822 | Cite as

Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

  • M. Penchal Reddy
  • F. Ubaid
  • R. A. Shakoor
  • A. M. A. Mohamed
Metal and Polymer Matrix Composites

Abstract

In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

Notes

Acknowledgements

This publication was made possible by NPRP Grant 7–159-2-076 from the Qatar National Research Fund (a member of the Qatar Foundation). Statements made herein are solely the responsibility of the authors.

Supplementary material

11837_2018_2831_MOESM1_ESM.pdf (844 kb)
Supplementary material 1 (PDF 843 kb)

References

  1. 1.
    F. Dobes, M. Besterci, B. Ballokova, K. Sulleiova, and P. Dymacek, Mater. Sci. Eng., A 532, 567 (2012).CrossRefGoogle Scholar
  2. 2.
    R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, Mater. Sci. Eng., A 527, 2720 (2010).CrossRefGoogle Scholar
  3. 3.
    L. Ceschini, G. Minak, and A. Morri, Comput. Sci. Technol. 69, 1783 (2009).CrossRefGoogle Scholar
  4. 4.
    M.P. Reddy, F. Ubaid, A. Shakoor, M. Yusuf, A.M.A. Mohamed, and M. Gupta, Nano Hyb. Comp. 16, 9 (2017).CrossRefGoogle Scholar
  5. 5.
    M.P. Reddy, F. Ubaid, R.A. Shakoor, P. Gururaj, M. Vyasaraj, A.M.A. Mohamed, and M. Gupta, Mater. Sci. Eng., A 696, 60 (2017).CrossRefGoogle Scholar
  6. 6.
    F. Ubaid, M.P. Reddy, R.A. Shakoor, P. Gururaj, M. Vyasaraj, A.M.A. Mohamed, and M. Gupta, Materials 10, 621 (2017).CrossRefGoogle Scholar
  7. 7.
    M.A. Chen, NPG Asia Mater. 3, 82 (2011).CrossRefGoogle Scholar
  8. 8.
    C. Suryanarayana and A. Inoue, Bulk metallic glasses, 2nd ed. (Baca Raton: CRC Press Inc., 2010).CrossRefGoogle Scholar
  9. 9.
    S.S. Joshi, A.V. Gkriniari, S. Katakam, and N.B. Dahotre, J. Phys. D Appl. Phys. 48, 495501 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Madhusudan, M.S. Sarcar, and N.B.R. Mohan Rao, J. Appl. Res. Tech. 14, 293 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Srikanth, L.K. Hoong, and M. Gupta, J. Mater. Sci. 16, 4173 (2015).Google Scholar
  12. 12.
    E.W. Huang, J. Qiao, B. Winiarski, W.J. Lee, M. Scheel, C.P. Chuang, P.K. Liaw, Y.C. Lo, Y. Zhang, and M.D. Michiel, Sci. Rep. 4, 4394 (2014).CrossRefGoogle Scholar
  13. 13.
    Y.J. Yang, D.W. Xing, J. Shen, J.F. Sun, S.D. Wei, H.J. He, and D.G. McCarney, J. Alloys Compd. 415, 106 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Suzuki, K. Hirabayashi, H. Shibta, K. Mimura, M. Isshiki, and Y. Waseda, Scr. Mater. 48, 431 (2003).CrossRefGoogle Scholar
  15. 15.
    K. Tomolya, A. Sycheva, M. Sveda, P. Arki, T. Miko, A. Roosz, and D. Janovszky, Metals 7, 92 (2017).CrossRefGoogle Scholar
  16. 16.
    D.V. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A.R. Yavari, and A. Inoue, Compos. Part A 41, 1551 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Tao, J. Jiang, B.F. Xiu, and D. Ying, Trans. Nonferrous Met. Soc. China 16, 604 (2006).CrossRefGoogle Scholar
  18. 18.
    M.S. Eskandranya and A.A. Azmi, J. Mech. Behav. Biomed. Mater. 56, 183 (2016).CrossRefGoogle Scholar
  19. 19.
    B.B. Medeiros, C.S. Kiminani, W. Botta, C. Bolfarini, and A.M.J.J. Junio, Mater. Res. 18, 448 (2015).CrossRefGoogle Scholar
  20. 20.
    M.R. Rezaeia, S.H. Razavib, and S.G. Shabestari, J. Alloy. Compd. 673, 17 (2016).CrossRefGoogle Scholar
  21. 21.
    M.P. Reddy, F. Ubaid, A. Shakoor, A.M.A. Mohamed, W. Madhuri, and J. Sci, Adv. Mater. Dev. 1, 362 (2016).Google Scholar
  22. 22.
    H. Hermawan, D. Dube, and D. Mantovani, Acta Biomater. 6, 1693 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Zavaliangos, J.M. Missiaen, and D. Bouvard, Sci. Sinter. 38, 13 (2006).CrossRefGoogle Scholar
  24. 24.
    D. Chaira, B.K. Mishra, and S. Sangal, Synthesis of silicon carbide by reaction milling in a dual-drive planetary mill (Englewood: Society for Mining, Metallurgy, and Exploration, Inc., 2007), pp. 253–265.Google Scholar
  25. 25.
    M.S. Al-Assiri, A. Alolah, A. Al-Hajry, and M. Bououdina, Rev. Adv. Mater. Sci. 18, 241 (2008).Google Scholar
  26. 26.
    M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi, Mater. Des. 30, 3333 (2009).CrossRefGoogle Scholar
  27. 27.
    D. Neelima, C. Mahesh, and V. lvaraj, Int. J. Appl. Eng. Res. 1, 793 (2011).Google Scholar
  28. 28.
    D.J. Lloyd, Inter. Mater. Rev. 39, 1 (1994).CrossRefGoogle Scholar
  29. 29.
    W.D. Callister and D.G. Rethwisch, Materials science and engineering: an introduction, 2nd ed. (New York: Wiley, 2007).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. Penchal Reddy
    • 1
  • F. Ubaid
    • 1
  • R. A. Shakoor
    • 1
  • A. M. A. Mohamed
    • 2
  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.Department of Metallurgical and Materials EngineeringSuez UniversitySuezEgypt

Personalised recommendations