Skip to main content
Log in

Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

  • Shaping & Forming of Advanced High Strength Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α′-martensite either directly or through ε-martensite. Uniaxial strain rates within the range of 0.005–500 s−1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (rn) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and rn with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Keeler and M. Kimchi, WorldAutoSteel, V5, 2015.

  2. C.D. Horvath, C.M. Enloe, J.P. Singh, and J.J. Coryell, in International Symposium on New Developments in Advanced High-Strength Sheet Steels (2017), p. 1.

  3. M. Rashid, Annu. Rev. Mater. Sci. 11, 245 (1981).

    Article  Google Scholar 

  4. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch, ASM Trans. Q. 60, 252 (1967).

    Google Scholar 

  5. E. De Moor, P. Gibbs, J. Speer, D. Matlock, and J. Schroth, Iron Steel Technol. 7, 132 (2010).

    Google Scholar 

  6. A. Clarke, J. Speer, M. Miller, R. Hackenberg, D. Edmonds, D. Matlock, et al., Acta Mater. 56, 16 (2008).

    Article  Google Scholar 

  7. P. Gibbs, E. De Moor, M. Merwin, B. Clausen, J. Speer, and D. Matlock, Metall. Mater. Trans. A 42, 3691 (2011).

    Article  Google Scholar 

  8. X. Hu, X. Sun, L.G. Hector, and Y. Ren, Acta Mater. 132, 230 (2017).

    Article  Google Scholar 

  9. S. Takaki, H. Nakatsu, and Y. Tokunaga, Mater. Trans. JIM 34, 489 (1993).

    Article  Google Scholar 

  10. B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock, Metall. Mater. Trans. A 44, 2563 (2013).

    Article  Google Scholar 

  11. F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, Jr., G. Thomas, and T.W. Brown, Metall. Mater. Trans. A (2018) (in press).

  12. G. Olson and M. Cohen, Metall. Mater. Trans. A 6, 791 (1975).

    Article  Google Scholar 

  13. J. Benzing, W. Poling, D. Pierce, J. Bentley, K. Findley, D. Raabe, et al., Mater. Sci. Eng. 711, 78 (2018).

    Article  Google Scholar 

  14. P. Zavattieri, V. Savic, L. Hector Jr., J. Fekete, W. Tong, and Y. Xuan, Int. J. Plast. 25, 2298 (2009).

    Article  Google Scholar 

  15. W. Wu, Y.-W. Wang, P. Makrygiannis, F. Zhu, G.A. Thomas, L.G. Hector, et al., Mater. Sci. Eng. 711, 611 (2018).

    Article  Google Scholar 

  16. V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild, Int. J. Solids Struct. 45, 601 (2008).

    Article  Google Scholar 

  17. H. Huh, S.-B. Kim, J.-H. Song, and J.-H. Lim, Int. J. Mech. Sci. 50, 918 (2008).

    Article  Google Scholar 

  18. H. Huh, H. Lee, and J. Song, Int. J. Automot. Technol. 13, 43 (2012).

    Article  Google Scholar 

  19. R. Alturk, S. Mates, Z. Xu, and F. Abu-Farha, in TMS 2017 146th Annual Meeting and Exhibition Supplemental Proceedings (2017), p. 243.

  20. S. Xu, D. Ruan, J.H. Beynon, and Y. Rong, Mater. Sci. Eng. 573, 132 (2013).

    Article  Google Scholar 

  21. J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee, Mater. Sci. Eng. 559, 222 (2013).

    Article  Google Scholar 

  22. J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, and F. Lu, Mater. Sci. Eng. 586, 62 (2013).

    Article  Google Scholar 

  23. X. Yang, L.G. Hector, and J. Wang, Exp. Mech. 54, 775 (2014).

    Article  Google Scholar 

  24. S. Li, D. Zou, C. Xia, and J. He, Steel Res. Int. 87, 1302 (2016).

    Article  Google Scholar 

  25. B.C. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, and S.J. Kim, Mater. Sci. Technol. 21, 967 (2013).

    Article  Google Scholar 

  26. S.F. Peterson, M. Mataya, and D. Matlock, JOM 49, 54 (1997).

    Article  Google Scholar 

  27. M.P. Pereira and B.F. Rolfe, J. Mater. Process. Technol. 214, 1749 (2014).

    Article  Google Scholar 

  28. I. Choi, D. Son, S. Kim, D.K. Matlock, and J.G. Speer, SAE Technical Paper 0148-7191 (2006).

  29. H. Hayashi and T. Nakagawa, J. Mater. Process. Technol. 46, 455 (1994).

    Article  Google Scholar 

  30. D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector, and A. Bower, Int. J. Fract. 209, 1 (2017).

    Google Scholar 

  31. F. Andrade, M. Feucht, A. Haufe, and F. Neukamm, Int. J. Fract. 200, 127 (2016).

    Article  Google Scholar 

  32. I. Choi, D. Kim, S. Kim, D. Bruce, D. Matlock, and J. Speer, Met. Mater. Int. 12, 13 (2006).

    Article  Google Scholar 

  33. S. Oliver, T.B. Jones, and G. Fourlaris, Mater. Charact. 58, 390 (2007).

    Article  Google Scholar 

  34. B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie Jr., Appl. Mech. Rev. 57, 223 (2004).

    Article  Google Scholar 

  35. J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek, and B. De Cooman, Metall. Mater. Trans. A 37, 1527 (2006).

    Article  Google Scholar 

  36. G.T. Gray III, ASM Handbook, Mechanical Testing and Evaluation (Russel Township, Ohio: ASM International, 2000), vol. 8, p. 462.

  37. H. Huh, W. Kang, and S. Han, Exp. Mech. 42, 8 (2002).

    Article  Google Scholar 

  38. W.W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (New York: Springer Science & Business Media, 2010).

    MATH  Google Scholar 

  39. S. Mates and F. Abu-Farha, Dyn. Behav. Mater. 1, 155 (2016).

    Google Scholar 

  40. J. Huh, H. Huh, and C.S. Lee, Int. J. Plast. 44, 23 (2013).

    Article  Google Scholar 

  41. M.T. Rahmaan, Low to high strain rate characterization of DP600, TRIP780, AA5182-O, University of Waterloo (2015).

  42. W. Li, J. Zhu, Y. Xia, and Q. Zhou, ASME 2015 International Mechanical Engineering Congress and Exposition (2015).

  43. V. Savic, L. Hector, U. Basu, A. Basudhar, I. Gandikota, N. Stander et al., SAE Technical Paper 0148-7191, 2017.

  44. E. ISO, 6892-1. Metallic materials-Tensile testing-Part 1: Method of test at room temperature, International Organization for Standardization (2009).

  45. B. Yan, Y. Kuriyama, A. Uenishi, D. Cornette, M. Borsutzki, and C. Wong, SAE Technical Paper 0148-7191, 2006

  46. M. Borsutzki, D. Cornette, Y. Kuriyama, A. Uenishi, B. Yan, and E. Opbroek, Rep. Proc., Annu. Conf. [Int. Iron Steel Inst.], 30 (2005).

  47. Y. Wang, H. Xu, D.L. Erdman, M.J. Starbuck, and S. Simunovic, Adv. Eng. Mater. 13, 943 (2011).

    Article  Google Scholar 

  48. International Organization for Standardization. (2011). Metallic materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and other test systems, 1st ed. (2011).

  49. S.-E.-P. S. d. S. VDEh, SEP1230. The determination of the mechanical properties of sheet metal at high strain rates in high-speed tensile tests, ed. (2006).

  50. H. Schreier, J.-J. Orteu, and M.A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements (New York: Springer, 2009).

    Book  Google Scholar 

  51. R. Alturk, W.E. Luecke, S. Mates, A. Araujo, K. Raghavan, and F. Abu-Farha, Procedia Eng. 207, 2006 (2017).

    Article  Google Scholar 

  52. J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Metall. Mater. Trans. A 36, 421 (2005).

    Article  Google Scholar 

  53. J.A. Lichtenfeld, C.J. Van Tyne, and M.C. Mataya, Metall. Mater. Trans. A 37, 147 (2006).

    Article  Google Scholar 

  54. M. Isakov, S. Hiermaier, and V.-T. Kuokkala, Metall. Mater. Trans. A 46, 2352 (2015).

    Article  Google Scholar 

  55. T.-H. Lee, H.-Y. Ha, J.-Y. Kang, J. Moon, C.-H. Lee, and S.-J. Park, Acta Mater. 61, 7399 (2013).

    Article  Google Scholar 

  56. M. Eskandari, A. Zarei-Hanzaki, M. Mohtadi-Bonab, Y. Onuki, R. Basu, A. Asghari, et al., Mater. Sci. Eng. 674, 514 (2016).

    Article  Google Scholar 

  57. D. Goodchild, W. Roberts, and D. Wilson, Acta Metall. 18, 1137 (1970).

    Article  Google Scholar 

  58. P. Zavattieri, V. Savic, L. Hector, J. Fekete, W. Tong, and Y. Xuan, Int. J. Plast. 25, 2298 (2009).

    Article  Google Scholar 

  59. J. Min, L.G. Hector, L. Zhang, J. Lin, J.E. Carsley, and L. Sun, Mater. Sci. Eng. 673, 423 (2016).

    Article  Google Scholar 

  60. W. Lankford, Trans. ASM 42, 1197 (1950).

    Google Scholar 

  61. W.F. Hosford, Int. J. Mech. Sci. 27, 423 (1985).

    Article  Google Scholar 

  62. G. Huang, B. Yan, and Z. Xia, SAE Int. J. Mater. Mech. Manuf. 4, 385 (2011).

    Article  Google Scholar 

  63. D. Daniel, J.J. Jonas, and J. Bussiére, Texture Stress Microstruct. 19, 175 (1992).

    Article  Google Scholar 

  64. R. Arthey and W. Hutchinson, Metall. Mater. Trans. A 12, 1817 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Colorado School of Mines and AK Steel for development of the intercritical annealing heat treatment and for supplying the material used in this study. The authors are especially gratefully to Prof. D.M. Matlock, Dr. G. Thomas, and Mr. E. McCarty for many helpful discussions on multiphase third-generation AHSSs. This material is based upon work supported by the Department of Energy under Cooperative Agreement Number DE-EE0005976, with United States Automotive Materials Partnership LLC (USAMP). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakan Alturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alturk, R., Hector, L.G., Matthew Enloe, C. et al. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel. JOM 70, 894–905 (2018). https://doi.org/10.1007/s11837-018-2830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2830-3

Navigation