Skip to main content
Log in

Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

  2. D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, and J. Eckert, Prog. Mater Sci. 58, 1103 (2013).

    Article  Google Scholar 

  3. N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz, Scripta Mater. 53, 271 (2005).

    Article  Google Scholar 

  4. B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan, and S. Bhattacharyya, Phys. Rev. Lett. 96, 245503 (2006).

    Article  Google Scholar 

  5. H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong, and D.H. Kim, Acta Mater. 58, 2483 (2010).

    Article  Google Scholar 

  6. A. Gebert, A.A. Kündig, L. Schultz, and K. Hono, Scr. Mater. 51, 961 (2004).

    Article  Google Scholar 

  7. J. Jayaraj, B.J. Park, D.H. Kim, W.T. Kim, and E. Fleury, Scr. Mater. 55, 1063 (2006).

    Article  Google Scholar 

  8. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

  9. E.S. Park, J.S. Kyeong, and D.H. Kim, Scr. Mater. 57, 49 (2007).

    Article  Google Scholar 

  10. Q. Luo, D.Q. Zhao, M.X. Pan, and W.H. Wang, Appl. Phys. Lett. 89, 081914 (2006).

    Article  Google Scholar 

  11. L. Liang, X. Hui, Y. Wu, and G.L. Chen, J. Alloys Compd. 457, 541 (2008).

    Article  Google Scholar 

  12. H. Fu, X.Y. Zhang, H.J. Yu, B.H. Teng, and X.T. Zu, Solid State Commun. 145, 15 (2008).

    Article  Google Scholar 

  13. K.-W. Kim et al., Biodesign 5, 24 (2017).

    Google Scholar 

  14. L.G. Zhang, H.Q. Dong, G.X. Huang, J. Shan, L.B. Liu, and Z.P. Jin, Calphad 33, 664 (2009).

    Article  Google Scholar 

  15. K. Yamaguchi, Y.C. Song, T. Yoshida, and K. Itagaki, J. Alloys Compd. 452, 73 (2008).

    Article  Google Scholar 

  16. V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex, J. Alloys Compd. 385, 133 (2004).

    Google Scholar 

  17. T. Wang, Z. Jin, and J.C. Zhao, J. Phase Equilib. 22, 544 (2001).

    Article  Google Scholar 

  18. H. Bo, L.B. Liu, J.L. Hu, X.D. Zhang, and Z.P. Jin, Thermochim. Acta 591, 51 (2014).

    Article  Google Scholar 

  19. M. Zinkevich, N. Mattern, and H.J. Seifer, J. Phase Equilib. 22, 43 (2001).

    Article  Google Scholar 

  20. C.H.P. Lupis, Chemical thermodynamics of materials, 1st ed. (North-Holland: Elsevier Science Ltd, 1983), pp. 304–305.

    Google Scholar 

  21. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  22. J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).

    Article  Google Scholar 

  23. G. Beaucage, H.K. Kammler, and S.E. Pratsinis, J. Appl. Crystallogr. 37, 523 (2004).

    Article  Google Scholar 

  24. F. Yuan, J. Du, and B. Shen, Appl. Phys. Lett. 101, 032405 (2012).

    Article  Google Scholar 

  25. J.H. Han, N. Mattern, B. Schwarz, S. Gorantla, T. Gemming, and J. Eckert, Intermetallics 20, 115 (2012).

    Article  Google Scholar 

  26. R.C. O’Handley, Modern magnetic materials: principles and applications, 1st ed. (New York: Wiley, 1999), pp. 403–405.

    Google Scholar 

  27. T. Bitoh, A. Makino, and A. Inoue, J. Appl. Phys. 99, 08F102 (2006).

    Article  Google Scholar 

  28. Y.A. Koksharov, S.P, ed. Magnetic Nanoparticles (Gubin (Weinheim): Wiley, 2009), p. 197.

    Google Scholar 

  29. C. Luna, M. del Puerto Morales, C.J. Serna, and M. Vázquez, Nanotechnology 14, 268 (2003).

    Article  Google Scholar 

  30. C.L. Zhang, D.H. Wang, Z.D. Han, H.C. Xuan, B.X. Gu, and Y.W. Du, J. Appl. Phys. 105, 013912 (2009).

    Article  Google Scholar 

Download references

Ackowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science, ICT and Future Planning) (No. 2014K1A3A1A20034841). One of the authors (E.S. Park) also benefited from the Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Soo Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Kim, J. & Park, E.S. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses. JOM 70, 988–992 (2018). https://doi.org/10.1007/s11837-018-2822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2822-3

Navigation