Advertisement

JOM

, Volume 70, Issue 6, pp 1024–1030 | Cite as

Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett–Burman and Response Surface Methodologies

  • Davood Ghoddocy Nejad
  • Ali Reza Khanchi
  • Majid Taghizadeh
Technical Communication
  • 88 Downloads

Abstract

Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett–Burman (P–B) design and response surface methodology (RSM). In this respect, temperature (80–95°C), liquid to solid ratio (L/S) (3–10 mL g−1), sulfuric acid concentration (3–6 M), nitric acid concentration (5–10 vol.%) and time (4–8 h) are considered as the independent variables. According to the P–B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

Supplementary material

11837_2018_2821_MOESM1_ESM.pdf (411 kb)
Supplementary material 1 (PDF 411 kb)

References

  1. 1.
    M.A. Abdel-Latif, Miner. Eng. 15, 953 (2002).CrossRefGoogle Scholar
  2. 2.
    A. Mahdavian, A. Shafyei, E.K. Alamdari, and D.F. Haghshenas, Int. J. Iron Steel Soc. Iran (ISSI) 3, 17 (2006).Google Scholar
  3. 3.
    X.-Y. Chen, X-Zh Lan, Q.-L. Zhang, H-Zh Ma, and J. Zhou, Trans. Nonferrous Met. Soc. 20, 123 (2010).CrossRefGoogle Scholar
  4. 4.
    A.M. Amer, Waste Manag. 22, 515 (2002).CrossRefGoogle Scholar
  5. 5.
    R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).CrossRefGoogle Scholar
  6. 6.
    C.K. Gupta and N. Krishnamurthy, Extractive Metallurgy of Vanadium (Amsterdam, New York: Elsevier, 1992).Google Scholar
  7. 7.
    H. Li, Y. Feng, J. Liang, X. Luo, and Zh Du, Rare Met. 27, 116 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Xiao and J.D. Liang, Min. Metall. Eng. 14, 53 (1994).Google Scholar
  9. 9.
    D.S. He, Q.M. Feng, G.F. Zhang, L.M. Ou, and Y.P. Lu, Miner. Metall. Process. 25, 181 (2008).Google Scholar
  10. 10.
    R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, Waste Manag. 27, 425 (2007).CrossRefGoogle Scholar
  11. 11.
    K. Murase, K.-I. Nishikawa, T. Ozaki, K.-I. Machida, G.-Y. Adachi, and T. Suda, J. Alloys Compd. 264, 151 (1998).CrossRefGoogle Scholar
  12. 12.
    S. Vitolo, M. Seggiani, S. Filippi, and C. Brocchini, Hydrometallurgy 57, 141 (2000).CrossRefGoogle Scholar
  13. 13.
    B. Voglauer, A. Grausam, and H.P. Jorgel, Miner. Eng. 17, 317 (2004).CrossRefGoogle Scholar
  14. 14.
    D. He, Q. Feng, G. Zhang, L. Ou, and Y. Lu, Miner. Eng. 20, 1184 (2007).CrossRefGoogle Scholar
  15. 15.
    X. Zhou, Ch Li, J. Li, H. Liu, and Sh Wu, Hydrometallurgy 99, 97 (2009).CrossRefGoogle Scholar
  16. 16.
    Q.-M. Feng, D.-S. He, G.-F. Zhang, L.-M. Ou, and Y.-P. Lu, Chin. J. Nonferrous Met. 17, 1348 (2007).Google Scholar
  17. 17.
    M.-T. Li, Ch Wei, G. Fan, C.-X. Li, Zh-G Deng, and X.-B. Li, Trans. Nonferrous Met. Soc. China 20, 112 (2010).CrossRefGoogle Scholar
  18. 18.
    J.L. Yang and X. Jin, J. Beijing Univ. Chem. Technol. 30, 254 (2007).Google Scholar
  19. 19.
    X.B. Li, Ch Wei, ZhG Deng, M.T. Li, C.X. Li, and H.S. Xu, Adv. Mater. Res. 402, 243 (2012).CrossRefGoogle Scholar
  20. 20.
    D.C. Montgomery, Design Analysis of Experiments, 7th ed. (NewYork: Wiley, 2008).Google Scholar
  21. 21.
    D.S. Correia, C.V. Gonçalves, S.S. da Cunha Jr., and V.A. Ferraresi, J. Mater. Process. Technol. 160, 70 (2005).CrossRefGoogle Scholar
  22. 22.
    T. Erzurumlu and H. Orkem, Mater. Des. 28, 459 (2007).CrossRefGoogle Scholar
  23. 23.
    A.H. Hamzaoui, B. Jamoussi, and A. M’nif, Hydrometallurgy 90, 1 (2008).CrossRefGoogle Scholar
  24. 24.
    R.H. Myers, D.C. Montgomery, and ChM Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed. (New York: Wiley, 2016).zbMATHGoogle Scholar
  25. 25.
    N.N. Joda and F. Rashchi, Sep. Purif. Technol. 92, 36 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentBabol Noshirvani University of TechnologyBabolIran
  2. 2.Nuclear Science and Technology Research InstituteTehranIran

Personalised recommendations