Skip to main content
Log in

Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0–42 mm and 0–39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nick, T. Rali, and O. Sticher, J. Ethnopharmacol. 49, 147 (1995).

    Article  Google Scholar 

  2. K.O. Akinyemi, O. Oladapo, C.E. Okwara, C.C. Ibe, and K.A. Fasure, BMC Complement. Altern. Med. 5, 1 (2005).

    Article  Google Scholar 

  3. J.H. Doughari, Trop. J. Pharm. Res. 5, 597 (2006).

    Google Scholar 

  4. J. Calixto, Braz. J. Med. Biol. Res. 33, 179 (2000).

    Article  MathSciNet  Google Scholar 

  5. C.W. Fennel, K.L. Lindsey, L.J. McGaw, O.M. Grace, and J. VanStaden, J. Ethnopathol. 94, 205 (2004).

    Article  Google Scholar 

  6. R.A. Street, W.A. Stirk, and J. VanStaden, J. Ethnopharmacol. 119, 205 (2008).

    Article  Google Scholar 

  7. A. Nostro, M.P. Germano, V.D. Angelo, A. Marino, and M.A. Cannatelli, Lett. Appl. Microbiol. 30, 379 (2000).

    Article  Google Scholar 

  8. A. Samie, C.L. Obi, P.O. Bessong, and L. Namrita, Afr. J. Biotechnol. 4, 1443 (2005).

    Google Scholar 

  9. D.A. Akinpelu and T.M. Onakoya, Afr. J. Biotechnol. 5, 1078 (2006).

    Google Scholar 

  10. J. Parekh and S. Chanda, Afr. J. Biotechnol. 6, 766 (2007).

    Google Scholar 

  11. M.I. Okeke, C.U. Iroegbu, C.O. Jideofor, A. Okoli, and C.O. Esimone, J. Herb spices Med. Plants 8, 39 (2001).

    Article  Google Scholar 

  12. U.J.J. Ijah and F.O. Oyebanji, Glob. J. Pure Appl. Sci. 9, 193 (2003).

    Google Scholar 

  13. A.O. Ogundare, F.C. Adetuyi, and F.A. Akinyosoye, Afr. J. Biotechnol. 5, 1663 (2006).

    Google Scholar 

  14. H. White, Medicine and Wart Removal, Hemorrhoids Treatment and Herpes Prevention Without Drugs (McGraw-Hill, New York, 2006). pp. 102–105.

    Google Scholar 

  15. R.N. Okigbo and M. Igwe, Acta Microbiol. Immunol. Hung. 54, 353 (2007).

    Article  Google Scholar 

  16. A.M. Oloyede, A.O. Aduramigba-Modupe, and I.K. Efem, Nat. Sci. 10, 43 (2012).

    Google Scholar 

  17. D.K. Olukoya, N. Idika, and T. Odugbemi, J. Ethnopharmacol. 39, 69 (1993).

    Article  Google Scholar 

  18. R.A. Onyeagba, O.C. Ugbogu, C.U. Okeke, and O. Iroakasi, Afr. J. Biotechnol. 3, 552 (2004).

    Article  Google Scholar 

  19. S.A. Sakir and W.M. Al-Amoudi, J. Appl. Pharm. Sci 02, 22 (2012).

    Article  Google Scholar 

  20. F.O. Omoya and F.C. Akharaiyi, Int. Res. J. Pharm. 2, 127 (2012).

    Google Scholar 

  21. Z.M. Al-Amin, Br. J. Nutr. 96, 660 (2006).

    Article  Google Scholar 

  22. A.T. Afshari, Food Chem. 101, 148 (2007).

    Article  Google Scholar 

  23. A. Sebiomo, A.D. Awofodu, A.O. Awosanya, F.E. Awotona, and A.J. Ajayi, J. Microbiol. Antimicrob. 3, 18 (2011).

    Google Scholar 

  24. P.N. Ravindran and K. Nirmal Babu, Botany and Crop Improvement of Ginger—The Genus Zingiber (CRC Press, 2005).

  25. A. Cakir, S. Kordali, H. Zengin, S. Izumi, and T. Hirata, Flavour Frag. J. 19, 62 (2004).

    Article  Google Scholar 

  26. E.E. Elgorashi, J.L.S. Taylor, A. Maes, M. deKimpe, J. VanStaden, and L. Verschaeve, S. Afr. J. Bot. 68, 408 (2002).

    Article  Google Scholar 

  27. N.S. Mashhadi, R. Ghiasvand, G. Askari, M. Hariri, L. Darvishi, and M. Rezamofid, Int. J. Prev. Med. 4, S36 (2013).

    Google Scholar 

  28. C.O. Eleazu, K.C. Eleazu, E. Awa, and S.C. Chukwuma, Eur. J. Biotechnol. Pharm. Res. 3, 42 (2012).

    Google Scholar 

  29. S. Nair, A. Sasidharan, V.V.V.D. Rani, D. Menon, S. Nair, K. Mazoor, and S. Raina, J. Mater. Sci. Mater. Med. 20, 235 (2009).

    Article  Google Scholar 

  30. N. Padmavati and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 1468 (2008).

    Google Scholar 

  31. R. Hardman, Environ. Health Perspect. 114, 165 (2006).

    Article  Google Scholar 

  32. S.P. Malu, G.O. Obochi, E.N. Tawo, and B.E. Nyong, Glob. J. Pure Appl. Sci. 15, 365 (2009).

    Google Scholar 

  33. G.E. Treese and W.C. Evans, Pharmacognosy (London: Bailliere Tridall, 1996), pp. 89–122.

    Google Scholar 

  34. B.A. Forbes, D.F. Sahm, A.S. Weissfeld, and E.A. Trevino, Bailey Scott’s diagnostic microbiology, ed. E.J. Baron, L.R. Peterson, and S.M. Finegold (St Louis: Mosby Co., 1990), pp. 171–194.

    Google Scholar 

  35. S. Omar, B. Lemonnier, N. Jones, C. Ficker, M.L. Smith, C. Neema, G.H.W. Towers, K. Goel, and J.T. Amason, J. Ethnopharmacol. 73, 161 (2000).

    Article  Google Scholar 

  36. M.N. Igwo-Ezikpe, N.O.A. Imaga, H.A. Ogbunugafor, A.A. Osuntoki, S. Adeleye, and A.O. Ipadeola, The Bioscientist 1, 73 (2013).

    Google Scholar 

  37. M. Durandurdu, J. Phys. Chem. Solids 70, 645 (2009).

    Article  Google Scholar 

  38. H.M.M. Ibrahim, J. Radiat. Res. Appl. Sci. 8, 265 (2015).

    Article  Google Scholar 

  39. G.D. Lutterodt, A. Ismail, R.H. Basheer, and H.M. Baharudin, Malays. J. Med. Sci. 6, 17 (1999).

    Google Scholar 

  40. M.C. Marjorie, Clin. Microbiol. Rev. 12, 564 (1999).

    Google Scholar 

  41. S. Gur, D. Turgut-Balik, and N. Gur, World J. Agric. Sci. 2, 439 (2006).

    Google Scholar 

  42. G. Singh and S.V. Bhat, J. Appl. Phy. 111, 123913 (2012).

    Article  Google Scholar 

  43. C. Malarkodi, S. Rajeshkumar, K. Paulkumar, G. GnanaJobitha, M. Vanaja, and G. Annadurai, Adv. Nanores. 1, 83 (2013).

    Article  Google Scholar 

  44. D. Kim, S. Jeong, and J. Moon, Nanotechnology 17, 4019 (2006).

    Article  Google Scholar 

  45. M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, and G. Annadurai, J. Nanostruct. Chem. 3, 1 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Obidi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obidi, O.F., Nejo, A.O., Ayeni, R.A. et al. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.. JOM 70, 982–987 (2018). https://doi.org/10.1007/s11837-018-2816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2816-1

Navigation