Advertisement

JOM

, Volume 70, Issue 6, pp 982–987 | Cite as

Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

  • O. F. Obidi
  • A. O. Nejo
  • R. A. Ayeni
  • N. Revaprasadu
Technical Communication
  • 48 Downloads

Abstract

The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0–42 mm and 0–39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

Supplementary material

11837_2018_2816_MOESM1_ESM.pdf (242 kb)
Supplementary material 1 (PDF 241 kb)

References

  1. 1.
    A. Nick, T. Rali, and O. Sticher, J. Ethnopharmacol. 49, 147 (1995).CrossRefGoogle Scholar
  2. 2.
    K.O. Akinyemi, O. Oladapo, C.E. Okwara, C.C. Ibe, and K.A. Fasure, BMC Complement. Altern. Med. 5, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    J.H. Doughari, Trop. J. Pharm. Res. 5, 597 (2006).Google Scholar
  4. 4.
    J. Calixto, Braz. J. Med. Biol. Res. 33, 179 (2000).MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.W. Fennel, K.L. Lindsey, L.J. McGaw, O.M. Grace, and J. VanStaden, J. Ethnopathol. 94, 205 (2004).CrossRefGoogle Scholar
  6. 6.
    R.A. Street, W.A. Stirk, and J. VanStaden, J. Ethnopharmacol. 119, 205 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Nostro, M.P. Germano, V.D. Angelo, A. Marino, and M.A. Cannatelli, Lett. Appl. Microbiol. 30, 379 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Samie, C.L. Obi, P.O. Bessong, and L. Namrita, Afr. J. Biotechnol. 4, 1443 (2005).Google Scholar
  9. 9.
    D.A. Akinpelu and T.M. Onakoya, Afr. J. Biotechnol. 5, 1078 (2006).Google Scholar
  10. 10.
    J. Parekh and S. Chanda, Afr. J. Biotechnol. 6, 766 (2007).Google Scholar
  11. 11.
    M.I. Okeke, C.U. Iroegbu, C.O. Jideofor, A. Okoli, and C.O. Esimone, J. Herb spices Med. Plants 8, 39 (2001).CrossRefGoogle Scholar
  12. 12.
    U.J.J. Ijah and F.O. Oyebanji, Glob. J. Pure Appl. Sci. 9, 193 (2003).Google Scholar
  13. 13.
    A.O. Ogundare, F.C. Adetuyi, and F.A. Akinyosoye, Afr. J. Biotechnol. 5, 1663 (2006).Google Scholar
  14. 14.
    H. White, Medicine and Wart Removal, Hemorrhoids Treatment and Herpes Prevention Without Drugs (McGraw-Hill, New York, 2006). pp. 102–105.Google Scholar
  15. 15.
    R.N. Okigbo and M. Igwe, Acta Microbiol. Immunol. Hung. 54, 353 (2007).CrossRefGoogle Scholar
  16. 16.
    A.M. Oloyede, A.O. Aduramigba-Modupe, and I.K. Efem, Nat. Sci. 10, 43 (2012).Google Scholar
  17. 17.
    D.K. Olukoya, N. Idika, and T. Odugbemi, J. Ethnopharmacol. 39, 69 (1993).CrossRefGoogle Scholar
  18. 18.
    R.A. Onyeagba, O.C. Ugbogu, C.U. Okeke, and O. Iroakasi, Afr. J. Biotechnol. 3, 552 (2004).CrossRefGoogle Scholar
  19. 19.
    S.A. Sakir and W.M. Al-Amoudi, J. Appl. Pharm. Sci 02, 22 (2012).CrossRefGoogle Scholar
  20. 20.
    F.O. Omoya and F.C. Akharaiyi, Int. Res. J. Pharm. 2, 127 (2012).Google Scholar
  21. 21.
    Z.M. Al-Amin, Br. J. Nutr. 96, 660 (2006).CrossRefGoogle Scholar
  22. 22.
    A.T. Afshari, Food Chem. 101, 148 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Sebiomo, A.D. Awofodu, A.O. Awosanya, F.E. Awotona, and A.J. Ajayi, J. Microbiol. Antimicrob. 3, 18 (2011).Google Scholar
  24. 24.
    P.N. Ravindran and K. Nirmal Babu, Botany and Crop Improvement of Ginger—The Genus Zingiber (CRC Press, 2005).Google Scholar
  25. 25.
    A. Cakir, S. Kordali, H. Zengin, S. Izumi, and T. Hirata, Flavour Frag. J. 19, 62 (2004).CrossRefGoogle Scholar
  26. 26.
    E.E. Elgorashi, J.L.S. Taylor, A. Maes, M. deKimpe, J. VanStaden, and L. Verschaeve, S. Afr. J. Bot. 68, 408 (2002).CrossRefGoogle Scholar
  27. 27.
    N.S. Mashhadi, R. Ghiasvand, G. Askari, M. Hariri, L. Darvishi, and M. Rezamofid, Int. J. Prev. Med. 4, S36 (2013).Google Scholar
  28. 28.
    C.O. Eleazu, K.C. Eleazu, E. Awa, and S.C. Chukwuma, Eur. J. Biotechnol. Pharm. Res. 3, 42 (2012).Google Scholar
  29. 29.
    S. Nair, A. Sasidharan, V.V.V.D. Rani, D. Menon, S. Nair, K. Mazoor, and S. Raina, J. Mater. Sci. Mater. Med. 20, 235 (2009).CrossRefGoogle Scholar
  30. 30.
    N. Padmavati and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 1468 (2008).Google Scholar
  31. 31.
    R. Hardman, Environ. Health Perspect. 114, 165 (2006).CrossRefGoogle Scholar
  32. 32.
    S.P. Malu, G.O. Obochi, E.N. Tawo, and B.E. Nyong, Glob. J. Pure Appl. Sci. 15, 365 (2009).Google Scholar
  33. 33.
    G.E. Treese and W.C. Evans, Pharmacognosy (London: Bailliere Tridall, 1996), pp. 89–122.Google Scholar
  34. 34.
    B.A. Forbes, D.F. Sahm, A.S. Weissfeld, and E.A. Trevino, Bailey Scott’s diagnostic microbiology, ed. E.J. Baron, L.R. Peterson, and S.M. Finegold (St Louis: Mosby Co., 1990), pp. 171–194.Google Scholar
  35. 35.
    S. Omar, B. Lemonnier, N. Jones, C. Ficker, M.L. Smith, C. Neema, G.H.W. Towers, K. Goel, and J.T. Amason, J. Ethnopharmacol. 73, 161 (2000).CrossRefGoogle Scholar
  36. 36.
    M.N. Igwo-Ezikpe, N.O.A. Imaga, H.A. Ogbunugafor, A.A. Osuntoki, S. Adeleye, and A.O. Ipadeola, The Bioscientist 1, 73 (2013).Google Scholar
  37. 37.
    M. Durandurdu, J. Phys. Chem. Solids 70, 645 (2009).CrossRefGoogle Scholar
  38. 38.
    H.M.M. Ibrahim, J. Radiat. Res. Appl. Sci. 8, 265 (2015).CrossRefGoogle Scholar
  39. 39.
    G.D. Lutterodt, A. Ismail, R.H. Basheer, and H.M. Baharudin, Malays. J. Med. Sci. 6, 17 (1999).Google Scholar
  40. 40.
    M.C. Marjorie, Clin. Microbiol. Rev. 12, 564 (1999).Google Scholar
  41. 41.
    S. Gur, D. Turgut-Balik, and N. Gur, World J. Agric. Sci. 2, 439 (2006).Google Scholar
  42. 42.
    G. Singh and S.V. Bhat, J. Appl. Phy. 111, 123913 (2012).CrossRefGoogle Scholar
  43. 43.
    C. Malarkodi, S. Rajeshkumar, K. Paulkumar, G. GnanaJobitha, M. Vanaja, and G. Annadurai, Adv. Nanores. 1, 83 (2013).CrossRefGoogle Scholar
  44. 44.
    D. Kim, S. Jeong, and J. Moon, Nanotechnology 17, 4019 (2006).CrossRefGoogle Scholar
  45. 45.
    M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, and G. Annadurai, J. Nanostruct. Chem. 3, 1 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • O. F. Obidi
    • 1
  • A. O. Nejo
    • 2
  • R. A. Ayeni
    • 1
  • N. Revaprasadu
    • 3
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of LagosLagosNigeria
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of LagosLagosNigeria
  3. 3.Department of ChemistryUniversity of ZululandKwadlangezwaSouth Africa

Personalised recommendations