JOM

, Volume 70, Issue 5, pp 644–649 | Cite as

Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

  • B. Chen
  • S. K. Moon
  • X. Yao
  • G. Bi
  • J. Shen
  • J. Umeda
  • K. Kondoh
Powder Metallurgy of Non-Ferrous Metals
  • 109 Downloads

Abstract

The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

References

  1. 1.
    N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, and C. Tuck, MRS Bull. 42, 311 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Qian, W. Xu, M. Brandt, and H. Tang, MRS Bull. 41, 775 (2016).CrossRefGoogle Scholar
  3. 3.
    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, Prog. Mater Sci. 74, 401 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, Phys. Procedia 12, 271 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Kempen, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Mater. Sci. Technol. 31, 917 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, and M.H. Loretto, Acta Mater. 117, 311 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, and K. Kondoh, Scr. Mater. 141, 45 (2017).CrossRefGoogle Scholar
  8. 8.
    K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert, Mater. Sci. Eng., A 590, 153 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Thijs, K. Kempen, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 1809 (2013).CrossRefGoogle Scholar
  10. 10.
    K.G. Prashanth, S. Scudino, and J. Eckert, Acta Mater. 126, 25 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Acta Mater. 115, 285 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh, Carbon 114, 198 (2017).CrossRefGoogle Scholar
  13. 13.
    B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, Compos. Sci. Technol. 113, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    B. Chen, K. Kondoh, H. Imai, J. Umeda, and M. Takahashi, Scr. Mater. 113, 158 (2016).CrossRefGoogle Scholar
  15. 15.
    C. Dunn and E. Kogh, Acta Metall. 5, 548 (1957).CrossRefGoogle Scholar
  16. 16.
    A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).CrossRefGoogle Scholar
  17. 17.
    N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Mater. Sci. Eng., A 704, 218 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan
  2. 2.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  4. 4.Singapore Institute of Manufacturing TechnologySingaporeSingapore

Personalised recommendations