Skip to main content
Log in

Coercivity Enhancement of Nd-Fe-B HDDR Powder by Grain Boundary Diffusion Process with Rare-Earth Hydride

  • Powder Metallurgy of Non-Ferrous Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The grain boundary diffusion (GBD) process with rare-earth hydride was performed to increase the coercivity of hydrogenation–disproportionation–desorption–recombination (HDDR) powder. Before the GBD process, we investigated the effect of post-annealing of the initial HDDR powder on its magnetic properties. Low-temperature annealing reduced the coercivity of the HDDR powder. However, the coercivity decline decreased with increasing annealing temperature, becoming similar to that of the initial powder at 900°C. After the GBD process at 850°C for 1 h, the coercivity increased by about 4 kOe with 4 wt.% NdH x -Cu, forming a thick and continuous grain boundary phase. In addition, the coercivity and remanence of the HDDR powder produced by the GBD process with NdH x -Cu were higher when using NdH x in spite of the same amount of diffusion as at 2 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S. Sankar, and J.P. Liu, Adv. Mater. 23, 821 (2011).

    Article  Google Scholar 

  2. K. Hono and H. Sepehri-Amin, Scr. Mater. 67, 530 (2012).

    Article  Google Scholar 

  3. W. Li, T. Ohkubo, K. Hono, T. Nishiuchi, and S. Hirosawa, Appl. Phys. Lett. 93, 052505 (2008).

    Article  Google Scholar 

  4. G. Hrkac, T. Woodcock, K. Butler, L. Saharan, M. Bryan, T. Schrefl, and O. Gutfleisch, Scr. Mater. 70, 35 (2014).

    Article  Google Scholar 

  5. H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, and K. Hono, Scr. Mater. 63, 1124 (2010).

    Article  Google Scholar 

  6. L. Liu, H. Sepehri-Amin, T. Ohkubo, M. Yano, A. Kato, T. Shoji, and K. Hono, J. Alloys Compd. 666, 432 (2016).

    Article  Google Scholar 

  7. T. Kim, S. Lee, H. Kim, M. Lee, and T. Jang, Acta Mater. 93, 95 (2015).

    Article  Google Scholar 

  8. K. Bae, T. Kim, S. Lee, H. Kim, M. Lee, and T. Jang, J. Alloys Compd. 612, 183 (2014).

    Article  Google Scholar 

  9. A. Gabay, M. Marinescu, W. Li, J. Liu, and G. Hadjipanayis, J. Appl. Phys. 109, 083916 (2011).

    Article  Google Scholar 

  10. T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, and K. Hono, Scr. Mater. 81, 48 (2014).

    Article  Google Scholar 

  11. H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, and K. Hono, Acta Mater. 61, 6622 (2013).

    Article  Google Scholar 

  12. H. Sepehri-Amin, L. Liu, T. Ohkubo, M. Yano, T. Shoji, A. Kato, T. Schrefl, and K. Hono, Acta Mater. 99, 297 (2015).

    Article  Google Scholar 

  13. T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, and K. Hono, J. Appl. Phys. 115, 17A766 (2014).

    Article  Google Scholar 

  14. Z. Lin, J. Han, M. Xing, S. Liu, R. Wu, C. Wang, Y. Zhang, Y. Yang, and J. Yang, Appl. Phys. Lett. 100, 052409 (2012).

    Article  Google Scholar 

  15. H. Sepehri-Amin, J. Liu, T. Ohkubo, K. Hioki, A. Hattori, and K. Hono, Scr. Mater. 69, 647 (2013).

    Article  Google Scholar 

  16. R. Mottram, B. Davis, V. Yartys, and I. Harris, Int. J. Hydrogen Energy 26, 441 (2001).

    Article  Google Scholar 

  17. P. Liu, T. Ma, X. Wang, Y. Zhang, and M. Yan, J. Alloys Compd. 628, 282 (2015).

    Article  Google Scholar 

  18. H.R. Cha, K.W. Jeon, J.G. Yu, H.W. Kwon, Y.D. Kim, and J.G. Lee, J. Alloys Compd. 693, 744 (2017).

    Article  Google Scholar 

  19. H.R. Cha, J.H. Yu, Y.K. Baek, H.W. Kwon, Y.D. Kim, and J.G. Lee, J. Magn. 19, 49 (2014).

    Article  Google Scholar 

  20. W. Li, T. Ohkubo, and K. Hono, Acta Mater. 57, 1337 (2009).

    Article  Google Scholar 

  21. T. Kim, S. Lee, S. Namkumg, and T. Jang, J. Alloys Compd. 537, 261 (2012).

    Article  Google Scholar 

  22. K. Takagi, M. Akada, R. Soda, and K. Ozaki, J. Magn. Magn. Mater. 393, 461 (2015).

    Article  Google Scholar 

  23. H. Sepehri-Amin, T. Ohkubo, T. Shima, and K. Hono, Acta Mater. 60, 819 (2012).

    Article  Google Scholar 

  24. H. Okamoto, J. Phase Equilb. Diffus. 36, 183 (2015).

    Article  Google Scholar 

  25. T. Kim, S. Lee, M. Lee, T. Jang, J.W. Kim, Y. Do Kim, and H. Kim, Acta Mater. 66, 12 (2014).

    Article  Google Scholar 

  26. J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, T. Schrefl, and K. Hono, Acta Mater. 82, 336 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Institute of Materials Science (KIMS) internal R&D program (Grant No. PNK5590) and Industrial Strategic Technology Development Program (10080382) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Goo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, HR., Yoo, JG., Baek, YK. et al. Coercivity Enhancement of Nd-Fe-B HDDR Powder by Grain Boundary Diffusion Process with Rare-Earth Hydride. JOM 70, 661–665 (2018). https://doi.org/10.1007/s11837-018-2792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2792-5

Navigation