Advertisement

JOM

, Volume 70, Issue 5, pp 616–620 | Cite as

Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

  • Shulong Ye
  • Wei Mo
  • Yonghu Lv
  • Xia Li
  • Chi Tat Kwok
  • Peng Yu
Powder Metallurgy of Non-Ferrous Metals
  • 168 Downloads

Abstract

Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content ~ 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

Notes

Acknowledgements

This work is supported by the Project of Shenzhen Science and Technology Innovation Committee (SGLH20161212155758670) in China and the Peacock Plan of Shenzhen Municipality (20130701226B). The titanium parts provided by Shenzhen ElementPlus Co. Ltd. are greatly appreciated.

References

  1. 1.
    C. Leyens and M. Peters, Titanium and Titanium Alloys Fundamentals and Applications, 1st ed. (Weinheim: Wiley-VCH, 2003), pp. 1–36.CrossRefGoogle Scholar
  2. 2.
    M. Qian and F.H. Sam Froes, Titanium Powder Metallurgy: Science, Technology and Applications, 1st ed. (Waltham: Elsevier, 2015), pp. 337–360.Google Scholar
  3. 3.
    E. Carreño-Morelli, J.E. Bidaux, M. Rodríguez-Arbaizar, H. Girard, and H. Hamdan, Powder Metall. 57, 89 (2014).CrossRefGoogle Scholar
  4. 4.
    R.M. German, Materials 6, 3641 (2013).CrossRefGoogle Scholar
  5. 5.
    O.M. Ferri, T. Ebel, and R. Bormann, Mater. Sci. Eng. A 527, 1800 (2010).CrossRefGoogle Scholar
  6. 6.
    F.H. Sam, Froes. Mater. Technol. 15, 295 (2016).Google Scholar
  7. 7.
    T. Ebel, Handbook of Metal Injection Molding, ed. D.F. Heaney (Cambridge: Woodhead Publishing Limited, 2012), p. 416.Google Scholar
  8. 8.
    S. Guo, B. Duan, X. He, and X. Qu, Rare Met. 28, 261 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Dehghan-Manshadi, D. StJohn, M. Dargusch, Y. Chen, J.F. Sun, and M. Qian, J Manuf. Process. 31, 416 (2018).CrossRefGoogle Scholar
  10. 10.
    A. Dehghan-Manshadi, M.J. Bermingham, M.S. Dargusch, D.H. StJohn, and M. Qian, Powder Technol. 319, 289 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Li, X.M. Chou, and L. Yu, Powder Metall. 49, 236 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Wen, P. Cao, B. Gabbitas, D. Zhang, and N. Edmonds, Metall. Mater. Trans. A 44, 1530 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shulong Ye
    • 1
    • 2
  • Wei Mo
    • 1
  • Yonghu Lv
    • 1
  • Xia Li
    • 1
  • Chi Tat Kwok
    • 2
    • 3
  • Peng Yu
    • 1
  1. 1.Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  2. 2.Institute of Applied Physics and Materials EngineeringUniversity of MacauMacauChina
  3. 3.Department of Electromechanical EngineeringUniversity of MacauMacauChina

Personalised recommendations