Skip to main content
Log in

Experimental and Numerical Analysis of Injection Molding of Ti-6Al-4V Powders for High-Performance Titanium Parts

  • Powder Metallurgy of Non-Ferrous Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure–volume–temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Park, Y. Wu, D.F. Heavey, X. Zou, G. Gai, and R.M. German, Metall. Mater. Trans. A 40A, 215 (2009).

    Article  Google Scholar 

  2. S. Guo, X. Qu, X. He, T. Zhou, and B. Duan, J. Mater. Process. Technol. 173, 310 (2006).

    Article  Google Scholar 

  3. J. Soyama, M. Oehring, T. Ebel, K.U. Kainer, and F. Pyczak, JOM 69, 676 (2017).

    Article  Google Scholar 

  4. M. Qian and F.H. Froes, Titanium Powder Metallurgy: Science, Technology and Applications, 1st ed. (Waltham: Elsevier, 2015), pp. 337–360.

    Google Scholar 

  5. R.M. German and A. Bose, Injection Molding of Metals and Ceramics, 1st ed. (New Jersey: Metal Power Industries Federation, 1997), pp. 25–81.

    Google Scholar 

  6. T. Ebel, O.M. Ferri, W. Limberg, F.-P. Schimansky, and H.-Z. Geesthacht, Adv. Powder. Metall. Part. Mater. 1, 45 (2011).

    Google Scholar 

  7. A. Dehghan-Manshadi, M.J. Bermingham, M.S. Dargusch, D.H. StJohn, and M. Qian, Powder Technol. 319, 289 (2013).

    Article  Google Scholar 

  8. A. Dehghan-Manshadi, D. StJohn, M. Dargusch, Y. Chen, J.F. Sun, and M. Qian, J. Manuf. Process. 31, 416 (2018).

    Article  Google Scholar 

  9. R.M. German, Materials 6, 3641 (2013).

    Article  Google Scholar 

  10. A. Mannschatz, S. Hohn, and T. Moritz, J. Eur. Ceram. Soc. 30, 2827 (2010).

    Article  Google Scholar 

  11. T.S. Shivashankar, R.K. Enneti, S.J. Park, R.M. German, and S.V. Atre, Powder Technol. 243, 79 (2013).

    Article  Google Scholar 

  12. H.O. Gulsoy, N. Gulsoy, and R. Calisici, Bio-Med. Mater. Eng. 24, 1861 (2014).

    Google Scholar 

  13. D.F. Heaney, Handbook of Metal Injection Molding, 1st ed. (Cambridge: Woodhead Publishing Limited, 2012), pp. 197–231.

    Book  Google Scholar 

  14. G. Aggarwal, S.J. Park, and I. Smid, Int. J. Refract. Met. Hard Mater. 24, 253 (2006).

    Article  Google Scholar 

  15. S. Ahn, S.T. Chung, S.V. Atre, S.J. Park, and R.M. German, Powder Metall. 51, 318 (2008).

    Article  Google Scholar 

  16. Th. Barriere, B. Liu, and J.C. Gelin, J. Mater. Process. Technol. 143–144, 636 (2003).

    Article  Google Scholar 

  17. W. Fang, X. He, R. Zhang, S. Yang, and X. Qu, Powder Technol. 256, 367 (2014).

    Article  Google Scholar 

  18. D. Lin, S.T. Chung, Y.S. Kwon, and S.J. Park, J. Mech. Sci. Technol. 30, 1859 (2016).

    Article  Google Scholar 

  19. T.G. Kang and T.H. Kwon, Int. Polym. Proc. 22, 266 (2007).

    Article  Google Scholar 

  20. J.-Y. Ho, J.M. Park, T.G. Kang, and S.J. Park, Polym. Eng. Sci. 52, 901 (2012).

    Article  Google Scholar 

  21. L.P. Franca, S.L. Frey, and T.J.R. Hughes, Comput. Methods Appl. Mech. Eng. 99, 209 (1992).

    Article  Google Scholar 

  22. A.N. Brooks and T.J.R. Hughes, Comput. Methods Appl. Mech. Eng. 32, 199 (1982).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the research project of the Civil Military Technology Cooperation Program and National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2011-0030075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Gon Kang or Seong Jin Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Kang, T.G., Han, J.S. et al. Experimental and Numerical Analysis of Injection Molding of Ti-6Al-4V Powders for High-Performance Titanium Parts. JOM 70, 621–625 (2018). https://doi.org/10.1007/s11837-018-2786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2786-3

Navigation