, Volume 70, Issue 5, pp 739–746 | Cite as

Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering

  • R. Reshmi Krishnan
  • Ganesh Sanjeev
  • Radhakrishna Prabhu
  • V. P. Mahadevan Pillai
Technical Communication


Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet–visible (UV–vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.


  1. 1.
    A. Murali, A. Barve, V.J. Leppert, and S.H. Risbud, Nano Lett. 1, 287 (2001).CrossRefGoogle Scholar
  2. 2.
    H. Yang, S. Wang, and Y. Yang, CrystEngComm 14, 1135 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. Shigesato, S. Thalaki, and T. Haranoh, J. Appl. Phys. 71, 3356 (1992).CrossRefGoogle Scholar
  4. 4.
    Y. Sobajima, H. Muto, Y. Shinohara, C. Sada, A. Matsuda, and H. Okamoto, Jpn. J. Appl. Phys. 51, 10NB05-1 (2012).CrossRefGoogle Scholar
  5. 5.
    C.G. Granqvist, Appl. Phys. A Solids Surf. 57, 19 (1993).CrossRefGoogle Scholar
  6. 6.
    I. Hamberg and C.G. Granqvist, J. Appl. Phys. 60, R123 (1986).CrossRefGoogle Scholar
  7. 7.
    M. Kumar, B.R. Mehta, V.N. Singh, R. Chatterjee, S. Milikisiyants, K.V. Lakshmi, and J.P. Singh, Appl. Phys. Lett. 96, 123114 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V. Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001).CrossRefGoogle Scholar
  9. 9.
    K.M. Sandeep, S. Bhat, and S.M. Dharmaprakash, Mater. Sci. Semicond. Process. 56, 265 (2016).CrossRefGoogle Scholar
  10. 10.
    N.Z. Razali, A.H. Abdullaha, and M.J. Haron, Adv. Mater. Res. 364, 402 (2012).CrossRefGoogle Scholar
  11. 11.
    P. Deepa, V. Sivaranjani, and P. Philominathan, Int. J. Thin. Film Sci. Technol. 4, 133 (2015).Google Scholar
  12. 12.
    S.J. Wen, G. Couturier, G. Campet, J. Portier, and J. Claveri, Phys. Stat. Sol. (a) 130, 407 (1992).CrossRefGoogle Scholar
  13. 13.
    M. Singh, V.N. Singh, and B.R. Mehta, J. Nanosci. Nanotechnol. 8, 3889 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Kaleemulla, N.M. Rao, N.S. Krishna, M. Kuppan, M.R. Begam, and M. Shobana, J. Nano-Electron. Phys. 5, 04048 (2013).Google Scholar
  15. 15.
    P. Deepa, V. Sivaranjani, and P. Philominathan, Int. J. Chem. Tech. Res. 6, 1939 (2014).Google Scholar
  16. 16.
    N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, I. Omkaram, and D.S. Reddy, J. Supercond. Novel Magn. 28, 2089 (2015).CrossRefGoogle Scholar
  17. 17.
    P.K.S Rao, S. Krishnan, M. Pattabi, and G. Sanjeev, Int. J. Chem. Tech. Res. 7(3), 1377 (2014–2015).Google Scholar
  18. 18.
    S. Kilarkaje, V. Manjunatha, S. Raghu, M.V.N.A. Prasad, and H. Devendrappa, J. Phys. D Appl. Phys. 44, 105403 (2011).CrossRefGoogle Scholar
  19. 19.
    G.M. Lohar, H.D. Dhaygude, B.P. Relekar, M.C. Rath, and V.J. Fulari, Ionics 22, 1451 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Sarkar, G. Sanjeev, and M.G. Mahesha, Radiat. Phys. Chem. 98, 64 (2014).CrossRefGoogle Scholar
  21. 21.
    J.J. Hren, J.I. Goldstein, and D.C. Joy, Introduction to Analytical Electron Microscopy, 1st ed. (New York: Springer, 1979), pp. 438–440.CrossRefGoogle Scholar
  22. 22.
    D.V. Myroniuk, A.I. Ievtushenko, G.V. Lashkarev, V.T. Maslyuk, I.I. Timofeeva, V.A. Baturin, O.Y. Karpenko, V.M. Kuznetsov, and M.V. Dranchuk, Semicond. Phys. Quantum Electron. Optoelectron. 18, 286 (2015).CrossRefGoogle Scholar
  23. 23.
    K.H.L. Zhang, A. Walsh, C.R.A. Catlow, V.K. Lazarov, and R.G. Egdell, Nano Lett. 10, 3740 (2010).CrossRefGoogle Scholar
  24. 24.
    S.S. Dhasade, S. Patil, B.B. Kale, S.H. Han, M.C. Rath, and V.J. Fulari, Mater. Lett. 93, 316 (2013).CrossRefGoogle Scholar
  25. 25.
    U. Ozgur, A. Teke, C. Liu, S.J. Cho, H. Morkoc, and H.O. Everitt, Appl. Phys. Lett. 84, 3223 (2004).CrossRefGoogle Scholar
  26. 26.
    R.R. Krishnan, K.G. Gopchandran, V.P.M. Pillai, V. Ganesan, and V. Sathe, Appl. Surf. Sci. 255, 7126 (2009).CrossRefGoogle Scholar
  27. 27.
    C. Agashe, M.G. Takwale, B.R. Marathe, and V.G. Bhide, Sol. Energy Mater. 17, 99 (1988).CrossRefGoogle Scholar
  28. 28.
    H. Faiz, K. Siraj, M.F. Khan, M. Irshad, S. Majeed, M.S. Rafique, and S. Naseem, J. Mater. Sci. Mater. Electron. 27, 8197 (2016).CrossRefGoogle Scholar
  29. 29.
    B.D. Cullity, Elements of X-ray Diffraction (Massachusetts: Addison-Wesley, 1956), p. 99.Google Scholar
  30. 30.
    R. Sathyamoorthy, S. Chandramohan, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, and K.P. Vijayakumar, J. Mater. Sci. 42, 6982 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, and K. Asokan, Nucl. Instrum. Methods Phys. Res. B 254, 236 (2007).CrossRefGoogle Scholar
  32. 32.
    R. Koch, J. Phys. Condens. Matter. 6, 9519 (1994).CrossRefGoogle Scholar
  33. 33.
    N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Rajan, and V.P.M. Pillai, J. Phys. Chem. C 117, 7818 (2013).CrossRefGoogle Scholar
  34. 34.
    R. Kayestha, Sumati, and K. Hajela, Fed. Eur. Biochem. Soc. Lett. 368, 285 (1995).CrossRefGoogle Scholar
  35. 35.
    A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009).CrossRefGoogle Scholar
  36. 36.
    S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, and A.K. Ghosh, RSC Adv. 4, 62123 (2014).CrossRefGoogle Scholar
  37. 37.
    J. Vetelino and A. Reghu, Introduction to Sensors (Suite: CRC Press, 2011), p. 35.Google Scholar
  38. 38.
    G. Korotcenkov, Handbook of Gas Sensor Materials (New York: Springer, 2013), p. 89.CrossRefGoogle Scholar
  39. 39.
    L.S. Miller and J.B. Mullin, Electronic Materials: from Silicon to Organics (New York: Springer, 1991), p. 502.CrossRefGoogle Scholar
  40. 40.
    Z. Ma and S. Dai, Heterogeneous Gold Catalysts and Catalysis (London: The Royal Society of Chemistry, 2014), p. 490.CrossRefGoogle Scholar
  41. 41.
    M.V.G. Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. 62, 219 (2007).CrossRefGoogle Scholar
  42. 42.
    N.-E. Sung, H.-K. Lee, K.H. Chae, J.P. Singh, and I.-J. Lee, J. Appl. Phys. 122, 085304 (2017).CrossRefGoogle Scholar
  43. 43.
    D. Tiwari and S. Dunn, J. Eur. Ceram. Soc. 29, 2799 (2009).CrossRefGoogle Scholar
  44. 44.
    Z. Yin, Z. Hu, H. Ye, F. Teng, C. Yang, and A. Tang, Appl. Surf. Sci. 307, 489 (2014).CrossRefGoogle Scholar
  45. 45.
    S. Luo, W. Zhou, Z. Zhang, J. Shen, L. Liu, W. Ma, X. Zhao, D. Liu, L. Song, Y. Xiang, J. Zhou, S. Xie, and W. Chu, Appl. Phys. Lett. 89, 093112 (2006).CrossRefGoogle Scholar
  46. 46.
    V. Luhin, I. Zharsky, and P. Zhukowski, Acta Phys. Pol. A 123, 837 (2013).CrossRefGoogle Scholar
  47. 47.
    G. Schon, Surf. Sci. 35, 96 (1973).CrossRefGoogle Scholar
  48. 48.
    O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, A.J.C. Lanfredi, E.R. Leite, and A.J. Chiquito, J. Phys. D Appl. Phys. 43, 045401 (2010).CrossRefGoogle Scholar
  49. 49.
    L. Guo, X. Shen, G. Zhu, and K. Chen, Sens. Actuators B 155, 752 (2011).CrossRefGoogle Scholar
  50. 50.
    R.L. Frost, J. Yang, and W.N. Martens, J. Therm. Anal. Calorim. 100, 109 (2010).CrossRefGoogle Scholar
  51. 51.
    R.R. Krishnan, R.S. Sreedharan, S.K. Sudheer, C. Sudarsanakumar, V. Ganesan, P. Srinivasan, and V.P.M. Pillai, Mater. Sci. Semicond. Process. 37, 112 (2015).CrossRefGoogle Scholar
  52. 52.
    B.G. Domene, H.M. Ortiz, O. Gomis, J.A. Sans, F.J. Manjón, A. Munoz, P.R. Hernandez, S.N. Achary, D. Errandonea, D.M. Garcia, A.H. Romero, A. Singhal, and A.K. Tyagi, J. Appl. Phys. 112, 123511 (2012).CrossRefGoogle Scholar
  53. 53.
    J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Sci. Rep. 3, 1021 (2013).CrossRefGoogle Scholar
  54. 54.
    S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, and J.A. Darr, Langmuir 28, 1879 (2012).CrossRefGoogle Scholar
  55. 55.
    Q. Williams, R.J. Hemley, M.B. Kruger, and R. Jeanloz, J. Geophys. Res. 98, 22157 (1993).CrossRefGoogle Scholar
  56. 56.
    J.I. Pankove, Optical Processes in Semiconductors (New York: Dover, 1971), p. 35.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • R. Reshmi Krishnan
    • 1
  • Ganesh Sanjeev
    • 2
  • Radhakrishna Prabhu
    • 3
  • V. P. Mahadevan Pillai
    • 1
  1. 1.Department of OptoelectronicsUniversity of KeralaKariavattom, ThiruvananthapuramIndia
  2. 2.Department of PhysicsMangalore UniversityMangalagangotriIndia
  3. 3.School of EngineeringRobert Gordon UniversityAberdeenUK

Personalised recommendations