Skip to main content
Log in

Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet–visible (UV–vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Murali, A. Barve, V.J. Leppert, and S.H. Risbud, Nano Lett. 1, 287 (2001).

    Article  Google Scholar 

  2. H. Yang, S. Wang, and Y. Yang, CrystEngComm 14, 1135 (2012).

    Article  Google Scholar 

  3. Y. Shigesato, S. Thalaki, and T. Haranoh, J. Appl. Phys. 71, 3356 (1992).

    Article  Google Scholar 

  4. Y. Sobajima, H. Muto, Y. Shinohara, C. Sada, A. Matsuda, and H. Okamoto, Jpn. J. Appl. Phys. 51, 10NB05-1 (2012).

    Article  Google Scholar 

  5. C.G. Granqvist, Appl. Phys. A Solids Surf. 57, 19 (1993).

    Article  Google Scholar 

  6. I. Hamberg and C.G. Granqvist, J. Appl. Phys. 60, R123 (1986).

    Article  Google Scholar 

  7. M. Kumar, B.R. Mehta, V.N. Singh, R. Chatterjee, S. Milikisiyants, K.V. Lakshmi, and J.P. Singh, Appl. Phys. Lett. 96, 123114 (2010).

    Article  Google Scholar 

  8. M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V. Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001).

    Article  Google Scholar 

  9. K.M. Sandeep, S. Bhat, and S.M. Dharmaprakash, Mater. Sci. Semicond. Process. 56, 265 (2016).

    Article  Google Scholar 

  10. N.Z. Razali, A.H. Abdullaha, and M.J. Haron, Adv. Mater. Res. 364, 402 (2012).

    Article  Google Scholar 

  11. P. Deepa, V. Sivaranjani, and P. Philominathan, Int. J. Thin. Film Sci. Technol. 4, 133 (2015).

    Google Scholar 

  12. S.J. Wen, G. Couturier, G. Campet, J. Portier, and J. Claveri, Phys. Stat. Sol. (a) 130, 407 (1992).

    Article  Google Scholar 

  13. M. Singh, V.N. Singh, and B.R. Mehta, J. Nanosci. Nanotechnol. 8, 3889 (2008).

    Article  Google Scholar 

  14. S. Kaleemulla, N.M. Rao, N.S. Krishna, M. Kuppan, M.R. Begam, and M. Shobana, J. Nano-Electron. Phys. 5, 04048 (2013).

    Google Scholar 

  15. P. Deepa, V. Sivaranjani, and P. Philominathan, Int. J. Chem. Tech. Res. 6, 1939 (2014).

    Google Scholar 

  16. N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, I. Omkaram, and D.S. Reddy, J. Supercond. Novel Magn. 28, 2089 (2015).

    Article  Google Scholar 

  17. P.K.S Rao, S. Krishnan, M. Pattabi, and G. Sanjeev, Int. J. Chem. Tech. Res. 7(3), 1377 (2014–2015).

  18. S. Kilarkaje, V. Manjunatha, S. Raghu, M.V.N.A. Prasad, and H. Devendrappa, J. Phys. D Appl. Phys. 44, 105403 (2011).

    Article  Google Scholar 

  19. G.M. Lohar, H.D. Dhaygude, B.P. Relekar, M.C. Rath, and V.J. Fulari, Ionics 22, 1451 (2016).

    Article  Google Scholar 

  20. D. Sarkar, G. Sanjeev, and M.G. Mahesha, Radiat. Phys. Chem. 98, 64 (2014).

    Article  Google Scholar 

  21. J.J. Hren, J.I. Goldstein, and D.C. Joy, Introduction to Analytical Electron Microscopy, 1st ed. (New York: Springer, 1979), pp. 438–440.

    Book  Google Scholar 

  22. D.V. Myroniuk, A.I. Ievtushenko, G.V. Lashkarev, V.T. Maslyuk, I.I. Timofeeva, V.A. Baturin, O.Y. Karpenko, V.M. Kuznetsov, and M.V. Dranchuk, Semicond. Phys. Quantum Electron. Optoelectron. 18, 286 (2015).

    Article  Google Scholar 

  23. K.H.L. Zhang, A. Walsh, C.R.A. Catlow, V.K. Lazarov, and R.G. Egdell, Nano Lett. 10, 3740 (2010).

    Article  Google Scholar 

  24. S.S. Dhasade, S. Patil, B.B. Kale, S.H. Han, M.C. Rath, and V.J. Fulari, Mater. Lett. 93, 316 (2013).

    Article  Google Scholar 

  25. U. Ozgur, A. Teke, C. Liu, S.J. Cho, H. Morkoc, and H.O. Everitt, Appl. Phys. Lett. 84, 3223 (2004).

    Article  Google Scholar 

  26. R.R. Krishnan, K.G. Gopchandran, V.P.M. Pillai, V. Ganesan, and V. Sathe, Appl. Surf. Sci. 255, 7126 (2009).

    Article  Google Scholar 

  27. C. Agashe, M.G. Takwale, B.R. Marathe, and V.G. Bhide, Sol. Energy Mater. 17, 99 (1988).

    Article  Google Scholar 

  28. H. Faiz, K. Siraj, M.F. Khan, M. Irshad, S. Majeed, M.S. Rafique, and S. Naseem, J. Mater. Sci. Mater. Electron. 27, 8197 (2016).

    Article  Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffraction (Massachusetts: Addison-Wesley, 1956), p. 99.

    Google Scholar 

  30. R. Sathyamoorthy, S. Chandramohan, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, and K.P. Vijayakumar, J. Mater. Sci. 42, 6982 (2007).

    Article  Google Scholar 

  31. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, and K. Asokan, Nucl. Instrum. Methods Phys. Res. B 254, 236 (2007).

    Article  Google Scholar 

  32. R. Koch, J. Phys. Condens. Matter. 6, 9519 (1994).

    Article  Google Scholar 

  33. N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Rajan, and V.P.M. Pillai, J. Phys. Chem. C 117, 7818 (2013).

    Article  Google Scholar 

  34. R. Kayestha, Sumati, and K. Hajela, Fed. Eur. Biochem. Soc. Lett. 368, 285 (1995).

    Article  Google Scholar 

  35. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009).

    Article  Google Scholar 

  36. S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, and A.K. Ghosh, RSC Adv. 4, 62123 (2014).

    Article  Google Scholar 

  37. J. Vetelino and A. Reghu, Introduction to Sensors (Suite: CRC Press, 2011), p. 35.

    Google Scholar 

  38. G. Korotcenkov, Handbook of Gas Sensor Materials (New York: Springer, 2013), p. 89.

    Book  Google Scholar 

  39. L.S. Miller and J.B. Mullin, Electronic Materials: from Silicon to Organics (New York: Springer, 1991), p. 502.

    Book  Google Scholar 

  40. Z. Ma and S. Dai, Heterogeneous Gold Catalysts and Catalysis (London: The Royal Society of Chemistry, 2014), p. 490.

    Book  Google Scholar 

  41. M.V.G. Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. 62, 219 (2007).

    Article  Google Scholar 

  42. N.-E. Sung, H.-K. Lee, K.H. Chae, J.P. Singh, and I.-J. Lee, J. Appl. Phys. 122, 085304 (2017).

    Article  Google Scholar 

  43. D. Tiwari and S. Dunn, J. Eur. Ceram. Soc. 29, 2799 (2009).

    Article  Google Scholar 

  44. Z. Yin, Z. Hu, H. Ye, F. Teng, C. Yang, and A. Tang, Appl. Surf. Sci. 307, 489 (2014).

    Article  Google Scholar 

  45. S. Luo, W. Zhou, Z. Zhang, J. Shen, L. Liu, W. Ma, X. Zhao, D. Liu, L. Song, Y. Xiang, J. Zhou, S. Xie, and W. Chu, Appl. Phys. Lett. 89, 093112 (2006).

    Article  Google Scholar 

  46. V. Luhin, I. Zharsky, and P. Zhukowski, Acta Phys. Pol. A 123, 837 (2013).

    Article  Google Scholar 

  47. G. Schon, Surf. Sci. 35, 96 (1973).

    Article  Google Scholar 

  48. O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, A.J.C. Lanfredi, E.R. Leite, and A.J. Chiquito, J. Phys. D Appl. Phys. 43, 045401 (2010).

    Article  Google Scholar 

  49. L. Guo, X. Shen, G. Zhu, and K. Chen, Sens. Actuators B 155, 752 (2011).

    Article  Google Scholar 

  50. R.L. Frost, J. Yang, and W.N. Martens, J. Therm. Anal. Calorim. 100, 109 (2010).

    Article  Google Scholar 

  51. R.R. Krishnan, R.S. Sreedharan, S.K. Sudheer, C. Sudarsanakumar, V. Ganesan, P. Srinivasan, and V.P.M. Pillai, Mater. Sci. Semicond. Process. 37, 112 (2015).

    Article  Google Scholar 

  52. B.G. Domene, H.M. Ortiz, O. Gomis, J.A. Sans, F.J. Manjón, A. Munoz, P.R. Hernandez, S.N. Achary, D. Errandonea, D.M. Garcia, A.H. Romero, A. Singhal, and A.K. Tyagi, J. Appl. Phys. 112, 123511 (2012).

    Article  Google Scholar 

  53. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Sci. Rep. 3, 1021 (2013).

    Article  Google Scholar 

  54. S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, and J.A. Darr, Langmuir 28, 1879 (2012).

    Article  Google Scholar 

  55. Q. Williams, R.J. Hemley, M.B. Kruger, and R. Jeanloz, J. Geophys. Res. 98, 22157 (1993).

    Article  Google Scholar 

  56. J.I. Pankove, Optical Processes in Semiconductors (New York: Dover, 1971), p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mahadevan Pillai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, R.R., Sanjeev, G., Prabhu, R. et al. Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering. JOM 70, 739–746 (2018). https://doi.org/10.1007/s11837-018-2776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2776-5

Navigation