Advertisement

JOM

, Volume 70, Issue 5, pp 691–699 | Cite as

Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies

  • R. Elliott
  • K. Coley
  • S. Mostaghel
  • M. Barati
Characterization of Advanced High Strength Steels for Automobiles

Abstract

Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC, STPGP463252-14). Additional thanks go to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for in-kind support and technical expertise.

Supplementary material

11837_2018_2773_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)

References

  1. 1.
    R. Elliott, K. Coley, S. Mostaghel, and M. Barati, JOM (2018).  https://doi.org/10.1007/s11837-018-2769-4.Google Scholar
  2. 2.
    G.J.W. Kor, Metall. Trans. B 9B, 307 (1978).CrossRefGoogle Scholar
  3. 3.
    W.J. Rankin and J.S.J. van Deventer, J. South Afr. Inst. Min. Metall. 2, 239 (1980).Google Scholar
  4. 4.
    J.S.J. van Deventer, Thermochim. Acta 112, 365 (1987).CrossRefGoogle Scholar
  5. 5.
    J.S.J. van Deventer, Thermochim. Acta 125, 107 (1988).CrossRefGoogle Scholar
  6. 6.
    M.A. Reuter and J.S.J. van Deventer, Thermochim. Acta 125, 99 (1988).CrossRefGoogle Scholar
  7. 7.
    K. Terayama and M. Ikeda, Trans. Jpn. Inst. Metals 26, 108 (1985).CrossRefGoogle Scholar
  8. 8.
    R. Kononov, O. Ostrovski, and S. Ganguly, Metall. Mater. Trans. B 39, 662 (2008).CrossRefGoogle Scholar
  9. 9.
    H.K. Shin, B.D. Lee, H.S. Lee, and Y.E. Lee, in Conference paper from the Thirteenth International Ferroalloys Congress (Almaty, Kazakhstan, 2013).Google Scholar
  10. 10.
    C.H. Eom and D.J. Min, Met. Mater. Int. 22, 129 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Kim and S. Jung, ISIJ Int. 56, 71 (2016).CrossRefGoogle Scholar
  12. 12.
    W.D. Grimsley, J.B. See, and R.P. King, J. South Afr. Inst. Min. Metall. 78, 51 (1977).Google Scholar
  13. 13.
    R.H. Eric and E. Burucu, Miner. Eng. 5, 795 (1992).CrossRefGoogle Scholar
  14. 14.
    G. Akdogan and R.H. Eric, Miner. Eng. 7, 633 (1994).CrossRefGoogle Scholar
  15. 15.
    G. Akdogan and R.H. Eric, Metall. Mater. Trans. B 26, 13 (1995).CrossRefGoogle Scholar
  16. 16.
    O.I. Ostrovski and T.J.M. Webb, ISIJ Int. 35, 331 (1995).CrossRefGoogle Scholar
  17. 17.
    M. Yastreboff, O. Ostrovski, and S. Ganguly, ISIJ Int. 43, 161 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Kumar, S. Ranganathan, and S.N. Sinha, in INFACON XI (2007), pp. 241–246.Google Scholar
  19. 19.
    R.S. Braga, C. Takano, and M.B. Mourão, Ironmak. Steelmak. 34, 279 (2007).CrossRefGoogle Scholar
  20. 20.
    R. Kononov, O. Ostrovski, and S. Ganguly, in INFACON XI (New Delhi, India, 2007), pp. 256–267.Google Scholar
  21. 21.
    K. Ohler-Martins and D. Senk, Steel Res. Int. 79, 811 (2008).CrossRefGoogle Scholar
  22. 22.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1099 (2009).CrossRefGoogle Scholar
  23. 23.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1107 (2009).CrossRefGoogle Scholar
  24. 24.
    R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1115 (2009).CrossRefGoogle Scholar
  25. 25.
    K.S. Abdel Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy, Ironmak. Steelmak. 38, 279 (2011).CrossRefGoogle Scholar
  26. 26.
    W.J. Rankin and J.R. Wynnyckyj, Metall. Mater. Trans. B 28, 307 (1997).CrossRefGoogle Scholar
  27. 27.
    E.T. Turkdogan and J.V. Vinters, Carbon N. Y. 7, 101 (1969).CrossRefGoogle Scholar
  28. 28.
    R.H. Tien and E.T. Turkdogan, Carbon N. Y. 8, 607 (1970).CrossRefGoogle Scholar
  29. 29.
    K. Terayama and T. Shimazaki, Netsu Sokutei 27, 13 (1999).Google Scholar
  30. 30.
    N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1480 (2004).CrossRefGoogle Scholar
  31. 31.
    N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1615 (2004).CrossRefGoogle Scholar
  32. 32.
    A. Bhalla, and R.H. Eric, in 14th International Ferroalloys Congress (Kiev, Ukraine, 2015), pp. 461–469.Google Scholar
  33. 33.
    R.H. Eric, A. Bhalla, P. Halli, and P. Taskinen, in Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies (2017), pp. 307–318.  https://doi.org/10.1007/978-3-319-51091-0_29.CrossRefGoogle Scholar
  34. 34.
    O. Ostrovski and G. Zhang, AIChE J. 52, 300 (2006).CrossRefGoogle Scholar
  35. 35.
    E.T. Turkdogan, V. Koump, J.V. Vinters, and T.F. Perzak, Carbon N. Y. 6, 467 (1968).CrossRefGoogle Scholar
  36. 36.
    J.D. Blackwood and A.J. Ingeme, Aust. J. Chem. 13, 194 (1960).CrossRefGoogle Scholar
  37. 37.
    T.F. Wall, G.S. Liu, H.W. Wu, D.G. Roberts, K.E. Benfell, S. Gupta, J.A. Lucas, and D.J. Harris, Prog. Energy Combust. Sci. 28, 405 (2002).CrossRefGoogle Scholar
  38. 38.
    E.T. Turkdogan and J.V. Vinters, Carbon N. Y. 8, 39 (1970).CrossRefGoogle Scholar
  39. 39.
    A. Koursaris, A.S.E. Kleyenstuber, and C.W.P. Finn, Spec. Publ. Geol. Soc. South Afr. 7, 375 (1983).Google Scholar
  40. 40.
    A. Koursaris and J.B. See, J. South Afr. Inst. Min. Metall. 79, 149 (1979).Google Scholar
  41. 41.
    A. Koursaris and J. See, J. South. Afr. Inst. Min. Metall. 80, 229 (1980).Google Scholar
  42. 42.
    M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (Amsterdam: Elsevier, 2013).Google Scholar
  43. 43.
    T.-A. Skjervheim and S.E. Olsen, in INFACON 7 (1995), pp. 631–640.Google Scholar
  44. 44.
    W. Ding and S.E. Olsen, ISIJ Int. 40, 850 (2000).CrossRefGoogle Scholar
  45. 45.
    S. Gaal, K. Berg, G. Tranell, S.E. Olsen, and M. Tangstad, in VII International Conference on Molten Slags, Fluxes and Salts (2004), p. 651.Google Scholar
  46. 46.
    J. Safarian, O. Grong, L. Kolbeinsen, and S.E. Olsen, ISIJ Int. 46, 1120 (2006).CrossRefGoogle Scholar
  47. 47.
    J. Safarian, G. Tranell, L. Kolbeinsen, M. Tangstad, S. Gaal, and J. Kaczorowski, Metall. Mater. Trans. B 39, 702 (2008).CrossRefGoogle Scholar
  48. 48.
    J. Safarian and L. Kolbeinsen, ISIJ Int. 48, 395 (2008).CrossRefGoogle Scholar
  49. 49.
    J. Safarian, L. Kolbeinsen, M. Tangstad, and G. Tranell, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 40, 929 (2009).CrossRefGoogle Scholar
  50. 50.
    E. Ringdalen, S. Gaal, M. Tangstad, and O. Ostrovski, Metall. Mater. Trans. B 41, 1220 (2010).CrossRefGoogle Scholar
  51. 51.
    H. Sun, M.Y. Lone, S. Ganguly, and O. Ostrovski, ISIJ Int. 50, 639 (2010).CrossRefGoogle Scholar
  52. 52.
    A. Blagus, J.R. Dankwah, and V. Sahajwalla, ISIJ Int. 53, 41 (2013).CrossRefGoogle Scholar
  53. 53.
    M. Zaki, M. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 311, 97 (1998).CrossRefGoogle Scholar
  54. 54.
    P. Perreault and G.S. Patience, Chem. Eng. J. 295, 227 (2016).CrossRefGoogle Scholar
  55. 55.
    A.A. El-Geassy, M.I. Nasr, M.A. Yousef, M.H. Khedr, and M. Bahgat, Ironmak. Steelmak. 27, 117 (2000).CrossRefGoogle Scholar
  56. 56.
    Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, and C.W. Kim, Metall. Mater. Trans. B 43, 1 (2012).Google Scholar
  57. 57.
    Y.B. Gao, H.G. Kim, and H.Y. Sohn, Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 121, 109 (2012).CrossRefGoogle Scholar
  58. 58.
    K. Turkova, D. Slizovskiy, and M. Tangstad, ISIJ Int. 54, 1204 (2014).CrossRefGoogle Scholar
  59. 59.
    K.L. Berg and S.E. Olsen, Metall. Mater. Trans. B 31, 477 (2000).CrossRefGoogle Scholar
  60. 60.
    R.J. Ishak and T. Lindstad, in Yazawa International Symposium on Metallurgical and Materials Processing: Principles and Technologies (2003), pp. 63–73.Google Scholar
  61. 61.
    M. Tangstad, M. Sibony, S. Wasb, and R. Tronstad, in INFACON 9 (2001), pp. 202–207.Google Scholar
  62. 62.
    H.H.A. El-Gawad, M.M. Ahmed, N.A. El-Hussiny, and M.E.H. Shalabi, OALib 1, 1 (2014).CrossRefGoogle Scholar
  63. 63.
    A.M. Ahmed, A.A. El-Geassy, and M.L. Mishreky, Ironmak. Steelmak. 42, 161 (2015).CrossRefGoogle Scholar
  64. 64.
    E.R. Stobbe, B.A. de Boer, and J.W. Geus, Catal. Today 47, 161 (1999).CrossRefGoogle Scholar
  65. 65.
    B. Khoshandam, R.V. Kumar, and E. Jamshidi, Can. Metall. Q. 46, 365 (2007).CrossRefGoogle Scholar
  66. 66.
    O. Ostrovski, N. Anacleto, and S. Ganguly, in Proceedings of the 10th International Ferroalloys Congress (2004), p. 173.Google Scholar
  67. 67.
    H.F. Abbas and W.M.A. Wan, Daud. Int. J. Hydrogen Energy 35, 1160 (2010).CrossRefGoogle Scholar
  68. 68.
    A. Abánades, E. Ruiz, E.M. Ferruelo, F. Hernández, A. Cabanillas, J.M. Martínez-Val, J.A. Rubio, C. López, R. Gavela, G. Barrera, C. Rubbia, D. Salmieri, E. Rodilla, and D. Gutiérrez, Int. J. Hydrogen Energy 36, 12877 (2011).CrossRefGoogle Scholar
  69. 69.
    A.M. Dunker and J.P. Ortmann, Int. J. Hydrogen Energy 31, 1989 (2006).CrossRefGoogle Scholar
  70. 70.
    D.B. Wellbeloved, P.M. Craven, and J.W. Waudby, Ullmann’s Encycl. Ind. Chem. (2000).  https://doi.org/10.1002/14356007.a16_077.Google Scholar
  71. 71.
    R. Kavitha and J.R. McDermid, Surf. Coat. Technol. 212, 152 (2012).CrossRefGoogle Scholar
  72. 72.
    P. Petrov, M. Marinov, and R. Paunova, J. Univ. Chem. Technol. Metall. 45, 431 (2010).Google Scholar
  73. 73.
    H. Sarangi, B. Sarangi, and A. Ray, ISIJ Int. 36, 35 (1996).CrossRefGoogle Scholar
  74. 74.
    J.T. Torres, A.F. Valdés, and J.M.A. Robles, Mater. Today Proc. 2, 4963 (2015).CrossRefGoogle Scholar
  75. 75.
    B. Jamieson and K. Coley, Metall. Mater. Trans. B, 48, 1613 (2017).  https://doi.org/10.1007/s11663-017-0967-z.CrossRefGoogle Scholar
  76. 76.
    W.L. Daines and R.D. Pehlke, Trans. Met. Soc. AIME 242, 565 (1968).Google Scholar
  77. 77.
    E. Shibata, H. Sun, and K. Mori, Metall. Mater. Trans. B 30, 279 (1999).CrossRefGoogle Scholar
  78. 78.
    J.H. Heo, Y. Chung, and J.H. Park, Metall. Mater. Trans. B 46, 1154 (2015).CrossRefGoogle Scholar
  79. 79.
    H. Sohn, Z. Chen, and W. Jung, Steel Res. 71, 145 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.McMaster Steel Research Centre, Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  3. 3.Hatch Ltd.MississaugaCanada

Personalised recommendations