JOM

, Volume 69, Issue 11, pp 2206–2213 | Cite as

Microstructure Evolution and Mechanical Response of Nanolaminate Composites Irradiated with Helium at Elevated Temperatures

Article
  • 181 Downloads

Abstract

We summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.

Notes

Acknowledgements

The authors gratefully acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, and LANL Lab Directed R&D (LDRD). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action, equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396.

References

  1. 1.
    I. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, and B. Uberuaga, Mater. Today 16, 443 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Demkowicz, A. Misra, and A. Caro, Curr. Opin. Solid State Mater. Sci. 16, 101 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Demkowicz, P. Bellon, and B. Wirth, MRS Bull. 35, 992 (2010).CrossRefGoogle Scholar
  4. 4.
    I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B. Uberuaga, Prog. Mater Sci. 74, 125 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59, 62 (2007).CrossRefGoogle Scholar
  6. 6.
    E. Fu, A. Misra, H. Wang, L. Shao, and X. Zhang, J. Nucl. Mater. 407, 178 (2010).CrossRefGoogle Scholar
  7. 7.
    N. Li, E. Fu, H. Wang, J. Carter, L. Shao, S. Maloy, A. Misra, and X. Zhang, J. Nucl. Mater. 389, 233 (2009).CrossRefGoogle Scholar
  8. 8.
    N. Li, M. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Appl. Phys. 105, 123522 (2009).CrossRefGoogle Scholar
  9. 9.
    N. Li, J. Carter, A. Misra, L. Shao, H. Wang, and X. Zhang, Philos. Mag. Lett. 91, 18 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Chen, Y. Liu, E. Fu, C. Sun, K. Yu, M. Song, J. Li, Y. Wang, H. Wang, and X. Zhang, Acta Mater. 84, 393 (2015).CrossRefGoogle Scholar
  11. 11.
    K. Yu, Y. Liu, E. Fu, Y. Wang, M. Myers, H. Wang, L. Shao, and X. Zhang, J. Nucl. Mater. 440, 310 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Philos. Mag. 93, 3547 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Chen, E. Fu, K. Yu, M. Song, Y. Liu, Y. Wang, H. Wang, and X. Zhang, J. Mater. Res. 30, 1300 (2015).CrossRefGoogle Scholar
  14. 14.
    W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra, Adv. Mater. 25, 6975 (2013).CrossRefGoogle Scholar
  15. 15.
    W. Han, N. Mara, Y. Wang, A. Misra, and M. Demkowicz, J. Nucl. Mater. 452, 57 (2014).CrossRefGoogle Scholar
  16. 16.
    L. Yang, S. Zheng, Y. Zhou, J. Zhang, Y. Wang, C. Jiang, N. Mara, I. Beyerlein, and X. Ma, J. Nucl. Mater. 487, 311 (2017).CrossRefGoogle Scholar
  17. 17.
    K. Hattar, M. Demkowicz, A. Misra, I. Robertson, and R. Hoagland, Scr. Mater. 58, 541 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Samaras, Mater. Today 12, 46 (2009).CrossRefGoogle Scholar
  19. 19.
    H. Ullmaier, Nucl. Fusion 24, 1039 (1984).CrossRefGoogle Scholar
  20. 20.
    H. Trinkaus and B. Singh, J. Nucl. Mater. 323, 229 (2003).CrossRefGoogle Scholar
  21. 21.
    G. Thomas, Radiat. Eff. 78, 37 (1983).CrossRefGoogle Scholar
  22. 22.
    G. Lucas, J. Nucl. Mater. 206, 287 (1993).CrossRefGoogle Scholar
  23. 23.
    D. Reed, Radiat. Eff. 31, 129 (1977).CrossRefGoogle Scholar
  24. 24.
    G. Greenwood, A. Foreman, and D. Rimmer, J. Nucl. Mater. 1, 305 (1959).CrossRefGoogle Scholar
  25. 25.
    M. Kaminsky and S. Das, J. Appl. Phys. 49, 5673 (1978).CrossRefGoogle Scholar
  26. 26.
    S. Erents and G. McCracken, Radiat. Eff. 18, 191 (1973).CrossRefGoogle Scholar
  27. 27.
    J. Evans, J. Nucl. Mater. 68, 129 (1977).CrossRefGoogle Scholar
  28. 28.
    M. Baskes, MRS Bull. 11, 14 (1986).CrossRefGoogle Scholar
  29. 29.
    H. Trinkaus, J. Nucl. Mater. 133, 105 (1985).CrossRefGoogle Scholar
  30. 30.
    G. Odette and G. Lucas, Radiat. Eff. Defects Solids 144, 189 (1998).CrossRefGoogle Scholar
  31. 31.
    J. Biersack and J. Ziegler, The Stopping and Range of Ions in Solids, Ion Implantation Techniques (Berlin: Springer, 1982), p. 122.CrossRefGoogle Scholar
  32. 32.
    S. Zheng, S. Shao, J. Zhang, Y. Wang, M.J. Demkowicz, I.J. Beyerlein, and N.A. Mara, Sci. Rep. 5, 15428 (2015).CrossRefGoogle Scholar
  33. 33.
    N. Li, M. Demkowicz, N. Mara, Y. Wang, and A. Misra, Mater. Res. Lett. 4, 75 (2016).CrossRefGoogle Scholar
  34. 34.
    A. Kashinath, A. Misra, and M. Demkowicz, Phys. Rev. Lett. 110, 086101 (2013).CrossRefGoogle Scholar
  35. 35.
    S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262 (1989).CrossRefGoogle Scholar
  36. 36.
    W. Han, M. Demkowicz, E. Fu, Y. Wang, and A. Misra, Acta Mater. 60, 6341 (2012).CrossRefGoogle Scholar
  37. 37.
    S.J. Zinkle, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 91, 234 (1994).CrossRefGoogle Scholar
  38. 38.
    N.A. Mara and I.J. Beyerlein, Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).CrossRefGoogle Scholar
  39. 39.
    N.A. Mara and I.J. Beyerlein, J. Mater. Sci. 49, 6497 (2014).CrossRefGoogle Scholar
  40. 40.
    S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara, Nat. Commun. 4, 1696 (2013).CrossRefGoogle Scholar
  41. 41.
    M.J. Demkowicz and L. Thilly, Acta Mater. 59, 7744 (2011).CrossRefGoogle Scholar
  42. 42.
    D. Chen, N. Li, D. Yuryev, J. Wen, K. Baldwin, M.J. Demkowicz, and Y. Wang, Mater. Res. Lett. 5, 335 (2017).CrossRefGoogle Scholar
  43. 43.
    D. Yuryev and M. Demkowicz, Appl. Phys. Lett. 105, 221601 (2014).CrossRefGoogle Scholar
  44. 44.
    Q. Wei, N. Li, N. Mara, M. Nastasi, and A. Misra, Acta Mater. 59, 6331 (2011).CrossRefGoogle Scholar
  45. 45.
    U.F. Kocks, Mater. Sci. Eng. 27, 291 (1977).CrossRefGoogle Scholar
  46. 46.
    R.L. Fleischer, Acta Metall. 10, 835 (1962).CrossRefGoogle Scholar
  47. 47.
    A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  48. 48.
    N. Li, N. Mara, Y. Wang, M. Nastasi, and A. Misra, Scr. Mater. 64, 974 (2011).CrossRefGoogle Scholar
  49. 49.
    M. Demkowicz, D. Bhattacharyya, I. Usov, Y. Wang, M. Nastasi, and A. Misra, Appl. Phys. Lett. 97, 161903 (2010).CrossRefGoogle Scholar
  50. 50.
    J. Wang, R. Hoagland, J. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institute for Materials ScienceLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations