Advertisement

JOM

, Volume 69, Issue 11, pp 2178–2186 | Cite as

Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids

Article

Abstract

Bulk metallic glass forming melts are viscous liquids compared with pure metals and conventional alloys. They show intermediate kinetic fragility and low thermodynamic driving force for crystallization, leading to sluggish crystallization kinetics, leaving time for good glass forming ability and bulk casting thickness. We relate the kinetics to the thermodynamics of the supercooled liquid using the Adam–Gibbs equation. The kinetic fragility is also connected to the structural changes in the liquid and can be quantitatively linked to the robustness of medium-range order in the supercooled liquid with increasing temperature. Liquid–liquid transitions from fragile behavior at high temperature to strong behavior at low temperature in the supercooled liquid and in the vicinity of the glass transition emerge as a common phenomenon.

Notes

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (BU2276/6-2; GA 1721/2-2). We are furthermore grateful for collaborations and discussions with O. Gross, M. Stolpe, Z. Evenson, S. Wei, A. Meyer, F. Yang, B. Ruta, and J. Bednarcik.

References

  1. 1.
    W. Buckel and R. Hilsch, Z. Phys. 138, 109 (1954).CrossRefGoogle Scholar
  2. 2.
    W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).CrossRefGoogle Scholar
  3. 3.
    R. Cahn, P. Haasen, and E. Kramer, in vol. 9 Glasses and Amorphous Materials (Materials Science and Technology, 1991)Google Scholar
  4. 4.
    A.J. Drehman, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982).CrossRefGoogle Scholar
  5. 5.
    T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32, 1005 (1991).CrossRefGoogle Scholar
  6. 6.
    A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM 33, 937 (1992).CrossRefGoogle Scholar
  7. 7.
    A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
  8. 8.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  9. 9.
    W.L. Johnson, MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
  10. 10.
    A.L. Greer, Nature 366, 303 (1993).CrossRefGoogle Scholar
  11. 11.
    R. Busch, JOM J. Min. Metall. Mater. Soc. 52, 39 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Busch, J. Schroers, and W.H. Wang, MRS Bull. 32, 620 (2007).CrossRefGoogle Scholar
  13. 13.
    R. Busch, Y.J. Kim, and W.L. Johnson, J. Appl. Phys. 77, 4039 (1995).CrossRefGoogle Scholar
  14. 14.
    R. Busch, E. Bakke, and W.L. Johnson, Mater. Sci. Forum 235–238, 327 (1997).CrossRefGoogle Scholar
  15. 15.
    R. Busch, W. Liu, and W.L. Johnson, J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar
  16. 16.
    R. Busch, E. Bakke, and W.L. Johnson, Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
  17. 17.
    C.A. Angell, Science 267, 1924 (1995).CrossRefGoogle Scholar
  18. 18.
    R. Busch, A. Masuhr, and W.L. Johnson, Mater. Sci. Eng. A 304–306, 97 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Masuhr, T.A. Waniuk, R. Busch, and W.L. Johnson, Phys. Rev. Lett. 82, 2290 (1999).CrossRefGoogle Scholar
  20. 20.
    B.A. Legg, J. Schroers, and R. Busch, Acta Mater. 55, 1109 (2007).CrossRefGoogle Scholar
  21. 21.
    R.J. Hyers and R.W. Rogers, High Temp. Process 27, 461 (2008).Google Scholar
  22. 22.
    V.M. Giordano and B. Ruta, Nat. Commun. 7, 1 (2016).Google Scholar
  23. 23.
    R. Busch and W.L. Johnson, Appl. Phys. Lett. 72, 2695 (1998).CrossRefGoogle Scholar
  24. 24.
    T.A. Waniuk, R. Busch, A. Masuhr, and W.L. Johnson, Acta Mater. 46, 5229 (1998).CrossRefGoogle Scholar
  25. 25.
    O. Gross, B. Bochtler, M. Stolpe, S. Hechler, W. Hembree, R. Busch, and I. Gallino, Acta Mater. 132, 118 (2017).CrossRefGoogle Scholar
  26. 26.
    H.E. Hagy, J. Am. Ceram. Soc. 46, 93 (1963).CrossRefGoogle Scholar
  27. 27.
    E. Bakke, R. Busch, and W.L. Johnson, Appl. Phys. Lett. 67, 3260 (1995).CrossRefGoogle Scholar
  28. 28.
    C.T.C. Moynihan, A.A.J. Easteal, J. Wilder, and J. Tucker, J. Phys. Chem. 78, 2673 (1974).CrossRefGoogle Scholar
  29. 29.
    A.Q. Tool, J. Am. Chem. Soc. 29, 240 (1946).Google Scholar
  30. 30.
    Z. Evenson, I. Gallino, and R. Busch, J. Appl. Phys. 107, 1 (2010).CrossRefGoogle Scholar
  31. 31.
    I. Gallino and R. Busch, JOM (2017). doi: 10.1007/s11837-017-2573-6.Google Scholar
  32. 32.
    P.N. Pusey and M. van Megen, J. Chem. Phys. 80, 3513 (1984).CrossRefGoogle Scholar
  33. 33.
    D.M. Mills, ed., Third-Generation Hard X-Ray Synchrotron Radiation Sources: Source Properties, Optics, and Experimental Techniques (New York: Wiley, 2002), p. 406.Google Scholar
  34. 34.
    M. Sutton, S.G.J. Mochrie, T. Greytak, S.E. Nagler, L.E. Berman, G.A. Held, and G.B. Stephenson, Nature 352, 608 (1991).CrossRefGoogle Scholar
  35. 35.
    G. Grübel, A. Madsen, and A. Robert, Soft Matter Characterization (Dordrecht: Springer, 2008), pp. 953–995.CrossRefGoogle Scholar
  36. 36.
    Z. Evenson, B. Ruta, S. Hechler, M. Stolpe, E. Pineda, I. Gallino, and R. Busch, Phys. Rev. Lett. 115, 1 (2015).CrossRefGoogle Scholar
  37. 37.
    B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V.M. Giordano, and M. Gonzalez-Silveira, Phys. Rev. Lett. 109, 1 (2012).CrossRefGoogle Scholar
  38. 38.
    S. Hechler, B. Ruta, M. Stolpe, E. Pineda, Z. Evenson, O. Gross, W. Hembree, A. Bernasconi, R. Busch, and I. Gallino (2017). arXiv:1704.06703.
  39. 39.
    I. Gallino, D. Cangialosi, Z. Evenson, L. Schmitt, S. Hechler, M. Stolpe, and B. Ruta (2017). arXiv:1706.03830.
  40. 40.
    Z. Evenson and R. Busch, Acta Mater. 59, 4404 (2011).CrossRefGoogle Scholar
  41. 41.
    I. Gallino, M.B. Shah, and R. Busch, Acta Mater. 55, 1367 (2007).CrossRefGoogle Scholar
  42. 42.
    R. Busch, Z. Evenson, I. Gallino, and S. Wei (2014). arXiv:1405.2251.
  43. 43.
    H.Z.P. Vogel, Z. Phys. 21, 645 (1921).Google Scholar
  44. 44.
    G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
  45. 45.
    W. Tammann and G. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).CrossRefGoogle Scholar
  46. 46.
    S. Nemilov, Glass Phys. Chem. 21, 91 (1995).Google Scholar
  47. 47.
    M.D. Ediger, C.A. Angell, and S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).CrossRefGoogle Scholar
  48. 48.
    L. Shadowspeaker and R. Busch, Appl. Phys. Lett. 85, 2508 (2004).CrossRefGoogle Scholar
  49. 49.
    L.-M. Martinez and C.A. Angell, Nature 410, 663 (2001).CrossRefGoogle Scholar
  50. 50.
    G. Adam and J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
  51. 51.
    I. Gallino, J. Schroers, and R. Busch, J. Appl. Phys. 108, 63501 (2010).CrossRefGoogle Scholar
  52. 52.
    C. Way, P. Wadhwa, and R. Busch, Acta Mater. 55, 2977 (2007).CrossRefGoogle Scholar
  53. 53.
    I. Jonas, Dissertation (Saarbrücken: Saarland University, 2017).Google Scholar
  54. 54.
    B. Bochtler, O. Gross, I. Gallino, and R. Busch, Acta Mater. 118, 129 (2016).CrossRefGoogle Scholar
  55. 55.
    W. Hembree, Dissertation (Saarbrücken: Saarland University, 2016).Google Scholar
  56. 56.
    Z. Evenson, T. Schmitt, M. Nicola, I. Gallino, and R. Busch, Acta Mater. 60, 4712 (2012).CrossRefGoogle Scholar
  57. 57.
    W. Xu, M.T. Sandor, Y. Yu, H.-B. Ke, H.-P. Zhang, M.-Z. Li, W.-H. Wang, L. Liu, and Y. Wu, Nat. Commun. 6, 7696 (2015).CrossRefGoogle Scholar
  58. 58.
    Z. Evenson, S. Raedersdorf, I. Gallino, and R. Busch, Scr. Mater. 63, 573 (2010).CrossRefGoogle Scholar
  59. 59.
    J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, and D.C. Allan, Proc. Natl. Acad. Sci. 106, 19780 (2009).CrossRefGoogle Scholar
  60. 60.
    C. Zhang, L. Hu, Y. Yue, and J.C. Mauro, J. Chem. Phys. 133, 1 (2010).Google Scholar
  61. 61.
    S. Wei, M. Stolpe, O. Gross, W. Hembree, S. Hechler, J. Bednarcik, R. Busch, and P. Lucas, Acta Mater. 129, 259 (2017).CrossRefGoogle Scholar
  62. 62.
    S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, and R. Busch, Nat. Commun. 4, 1 (2013).Google Scholar
  63. 63.
    J. Errington and P. Debenedetti, Nature 409, 318 (2001).CrossRefGoogle Scholar
  64. 64.
    O. Mishima, J. Chem. Phys. 133, 144503 (2010).CrossRefGoogle Scholar
  65. 65.
    I. Saika-Voivod, P.H. Poole, and F. Sciortino, Nature 412, 514 (2001).CrossRefGoogle Scholar
  66. 66.
    M. Hemmati, C.T. Moynihan, and C. Austen Angell, J. Chem. Phys. 115, 6663 (2001).CrossRefGoogle Scholar
  67. 67.
    R. Kurita and H. Tanaka, J. Chem. Phys. 126, 204505 (2007).CrossRefGoogle Scholar
  68. 68.
    H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, and E. Ma, Nat. Mater. 6, 192 (2007).CrossRefGoogle Scholar
  69. 69.
    M. Stolpe, I. Jonas, S. Wei, Z. Evenson, W. Hembree, F. Yang, A. Meyer, and R. Busch, Phys. Rev. B 93, 14201 (2016).CrossRefGoogle Scholar
  70. 70.
    A. Jaiswal, T. Egami, K.F. Kelton, K.S. Schweizer, and Y. Zhang, Phys. Rev. Lett. 117, 205701 (2016).CrossRefGoogle Scholar
  71. 71.
    S. Wei, M. Stolpe, O. Gross, Z. Evenson, I. Gallino, W. Hembree, J. Bednarcik, J.J. Kruzic, and R. Busch, Appl. Phys. Lett. 106, 181901 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Chair of Metallic Materials, Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations