Advertisement

JOM

, Volume 69, Issue 11, pp 2171–2177 | Cite as

Relaxation Pathways in Metallic Glasses

Article

Abstract

At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

Notes

Acknowledgements

The authors acknowledge the German Research Foundation (DFG) for support (GA1721/2-2, BU2276/6-2). We are furthermore grateful for collaborations and discussions with Z. Evenson, B. Ruta, D. Cangialosi, M. Stolpe, S. Hechler, O. Gross, L. Schmitt and A. Masuhr.

References

  1. 1.
    A.L. Greer, Nature 366, 303 (1993).CrossRefGoogle Scholar
  2. 2.
    C.A. Angell, Science 267, 1924 (1995).CrossRefGoogle Scholar
  3. 3.
    C.A. Angell, MRS Bull. 33, 544 (2008).CrossRefGoogle Scholar
  4. 4.
    I. Gallino, J. Schroers, and R. Busch, J. Appl. Phys. 108, 63501 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Busch and I. Gallino, JOM (2017). doi: 10.1007/s11837-017-2574-5.
  6. 6.
    T.A. Waniuk, R. Busch, A. Masuhr, and W.L. Johnson, Acta Mater. 46, 5229 (1998).CrossRefGoogle Scholar
  7. 7.
    R. Busch, E. Bakke, and W.L. Johnson, Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
  8. 8.
    R. Busch, W. Liu, and W.L. Johnson, J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar
  9. 9.
    B. Bochtler, O. Gross, I. Gallino, and R. Busch, Acta Mater. 118, 129 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Evenson and R. Busch, Acta Mater. 59, 4404 (2011).CrossRefGoogle Scholar
  11. 11.
    O. Gross, B. Bochtler, M. Stolpe, S. Hechler, W. Hembree, R. Busch, and I. Gallino, Acta Mater. 132, 118 (2017).CrossRefGoogle Scholar
  12. 12.
    Z. Evenson, T. Schmitt, M. Nicola, I. Gallino, and R. Busch, Acta Mater. 60, 4712 (2012).CrossRefGoogle Scholar
  13. 13.
    S.L. Philo, J. Heinrich, I. Gallino, R. Busch, and J.J. Kruzic, Scr. Mater. 64, 359 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Stanojevic, I. Gallino, H. Aboulfadl, M. Sahin, F. Mücklich, and R. Busch, Acta Mater. 102, 176 (2016).CrossRefGoogle Scholar
  15. 15.
    G.J. Fan, H.-J. Fecht, and E.J. Lavernia, Appl. Phys. Lett. 84, 487 (2004).CrossRefGoogle Scholar
  16. 16.
    I. Gallino, M.B. Shah, and R. Busch, Acta Mater. 55, 1367 (2007).CrossRefGoogle Scholar
  17. 17.
    G.J. Fan, J.F. Löffler, R.K. Wunderlich, and H.J. Fecht, Acta Mater. 52, 667 (2004).CrossRefGoogle Scholar
  18. 18.
    I. Gallino, D. Cangialosi, Z. Evenson, L. Schmitt, S. Hechler, M. Stolpe, and B. Ruta, ArXiv. 1706, 03830 (2017).Google Scholar
  19. 19.
    R. Böhmer, K.L. Ngai, C.A. Angell, and D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).CrossRefGoogle Scholar
  20. 20.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, J. Appl. Phys. 88, 3113 (2000).CrossRefGoogle Scholar
  21. 21.
    A. Kovacs, Fortsch. Hochpolym. Fo. 3, 394 (1963).CrossRefGoogle Scholar
  22. 22.
    A.Q. Tool, J. Am. Chem. Soc. 29, 240 (1946).Google Scholar
  23. 23.
    O. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971).CrossRefGoogle Scholar
  24. 24.
    D. Cangialosi, J. Phys. Condens. Matter 26, 153101 (2014).CrossRefGoogle Scholar
  25. 25.
    R. Richert, J. Phys. Condens. Matter 14, 703 (2002).CrossRefGoogle Scholar
  26. 26.
    P. Tuinstra, P.A. Duine, J. Sietsma, and A. van der Beukel, Acta Metall. Mater. 43, 2815 (1995).CrossRefGoogle Scholar
  27. 27.
    Z. Evenson, I. Gallino, and R. Busch, J. Appl. Phys. 107, 1 (2010).CrossRefGoogle Scholar
  28. 28.
    R. Busch and W.L. Johnson, Appl. Phys. Lett. 72, 2695 (1998).CrossRefGoogle Scholar
  29. 29.
    K. Samwer, R. Busch, and W.L. Johnson, Phys. Rev. Lett. 82, 580 (1999).CrossRefGoogle Scholar
  30. 30.
    C. Schick and V. Mathot, Fast Scanning Calorim. (2016).Google Scholar
  31. 31.
    L. Hu, Y. Yue, and C. Zhang, Appl. Phys. Lett. 98, 81904 (2011).CrossRefGoogle Scholar
  32. 32.
    Z. Evenson, B. Ruta, S. Hechler, M. Stolpe, E. Pineda, I. Gallino, and R. Busch, Phys. Rev. Lett. 115, 1 (2015).CrossRefGoogle Scholar
  33. 33.
    Y. Fan, T. Iwashita, and T. Egami, Phys. Rev. Lett. 115, 1 (2015).Google Scholar
  34. 34.
    H.S. Chen, A. Inoue, and T. Masumoto, J. Mater. Sci. 20, 2417 (1985).CrossRefGoogle Scholar
  35. 35.
    M.R.J. Gibbs, M.R.J. Gibbs, J.E. Evetts, J.E. Evetts, J.A. Leake, and J.A. Leake, J. Mater. Sci. 18, 278 (1983).CrossRefGoogle Scholar
  36. 36.
    R.C. Welch, J.R. Smith, M. Potuzak, X. Guo, B.F. Bowden, T.J. Kiczenski, D.C. Allan, E.A. King, A.J. Ellison, and J.C. Mauro, Phys. Rev. Lett. 110, 265901 (2013).CrossRefGoogle Scholar
  37. 37.
    D. Cangialosi, V.M. Boucher, A. Alegría, and J. Colmenero, Phys. Rev. Lett. 111, 095701 (2013).CrossRefGoogle Scholar
  38. 38.
    A. Brunacci, J.M.G. Cowie, R. Ferguson, and I.J. McEwen, Polymer (Guildf). 38, 3263 (1997).CrossRefGoogle Scholar
  39. 39.
    A. Heuer, J. Phys. Condens. Matter 20, 373101 (2008).CrossRefGoogle Scholar
  40. 40.
    T. Egami, Ann. N.Y. Acad. Sci. 371, 238 (1981).CrossRefGoogle Scholar
  41. 41.
    S.W. Basuki, F. Yang, E. Gill, K. Raetzke, A. Meyer, and F. Faupel, Phys. Rev. B—Condens. Matter Mater. Phys. 95, 24301 (2017).CrossRefGoogle Scholar
  42. 42.
    Z. Evenson, T. Koschine, S. Wei, O. Gross, J. Bednarcik, I. Gallino, J.J. Kruzic, K. Rätzke, F. Faupel, and R. Busch, Scr. Mater. 103, 14 (2015).CrossRefGoogle Scholar
  43. 43.
    W. Xu, M.T. Sandor, Y. Yu, H.-B. Ke, H.-P. Zhang, M.-Z. Li, W.-H. Wang, L. Liu, and Y. Wu, Nat. Commun. 6, 7696 (2015).CrossRefGoogle Scholar
  44. 44.
    X. Tang, U. Geyer, R. Busch, W.L. Johnson, and Y. Wu, Nature 402, 160 (1999).CrossRefGoogle Scholar
  45. 45.
    X.-P. Tang, R. Busch, W.L. Johnson, and Y. Wu, Phys. Rev. Lett. 81, 5358 (1998).CrossRefGoogle Scholar
  46. 46.
    A. Madsen, A. Fluerasu, and B. Ruta, in Synchrotron Light Sources Free. Lasers (Cham: Springer International Publishing, 2015), pp. 1–21.Google Scholar
  47. 47.
    Z. Evenson, S.E. Naleway, S. Wei, O. Gross, J.J. Kruzic, I. Gallino, W. Possart, M. Stommel, and R. Busch, Phys. Rev. B–Condens. Matter Mater. Phys. 89, 1 (2014).Google Scholar
  48. 48.
    V.M. Giordano and B. Ruta, Nat. Commun. 7, 1 (2016).Google Scholar
  49. 49.
    B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V.M. Giordano, and M. Gonzalez-Silveira, Phys. Rev. Lett. 109, 1 (2012).CrossRefGoogle Scholar
  50. 50.
    F. Faupel, W. Frank, M.P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, and H. Teichler, Rev. Mod. Phys. 75, 237 (2003).CrossRefGoogle Scholar
  51. 51.
    U. Geyer, W.L. Johnson, S. Schneider, Y. Qiu, and T.A. Tombrello, Appl. Phys. Lett. 69, 2492 (1996).CrossRefGoogle Scholar
  52. 52.
    E. Budke, P. Fielitz, M.P. Macht, V. Naundorf, and G. Frohberg, Defect Diffus. Forum 143–147, 825 (1997).CrossRefGoogle Scholar
  53. 53.
    A. Bartsch, K. Raetze, A. Meyer, and F. Faupel, Phys. Rev. Lett. 104, 195901 (2010).CrossRefGoogle Scholar
  54. 54.
    A. Masuhr, T. Waniuk, R. Busch, and W. Johnson, Phys. Rev. Lett. 82, 2290 (1999).CrossRefGoogle Scholar
  55. 55.
    S. Hechler, B. Ruta, M. Stolpe, E. Pineda, Z. Evenson, O. Gross, W. Hembree, A. Bernasconi, R. Busch, and I. Gallino, ArXiv. 1704, 06703 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Chair of Metallic Materials, Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations