Advertisement

JOM

, Volume 69, Issue 11, pp 2199–2205 | Cite as

Alloy Design Criteria for Solid Metal Dealloying of Thin Films

Article

Abstract

Liquid metal dealloying is a promising route for making metal nanocomposites with a wide range of microstructure morphologies. However, it is not well suited for synthesizing nanocomposites in thin-film form. We propose a new route to fabricating fully dense nanocomposite thin films by dealloying a binary parent alloy in a unary solid metal solvent. We fabricated and tested three thin-film diffusion couples to understand the alloy design criteria for synthesizing dealloyed thin films free of cracks and voids. We find that the best-quality dealloyed thin films may be obtained from alloys that do not undergo large volume changes upon dealloying and that exhibit minimal net vacancy flux during interdiffusion.

Notes

Acknowledgements

This work was supported by the NSF DMREF program under Grant #1623051. We thank J. K. Baldwin for preparation and deposition of the thin-film samples used in this study and A. Misra for helpful discussions. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Use of the TAMU Materials Characterization Facility is acknowledged.

References

  1. 1.
    J. Erlebacher and R. Seshadri, MRS Bull. 34, 561 (2009).CrossRefGoogle Scholar
  2. 2.
    I. McCue, E. Benn, B. Gaskey, and J. Erlebacher, Annu. Rev. Mater. Res. 46, 263 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Erlebacher, J. Electrochem. Soc. 151, C614 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Snyder, K. Livi, and J. Erlebacher, Adv. Funct. Mater. 23, 5494 (2013).CrossRefGoogle Scholar
  5. 5.
    F. Scaglione, F. Celegato, P. Rizzi, and L. Battezzati, Intermetallics 66, 82 (2015).CrossRefGoogle Scholar
  6. 6.
    Q. Chen and K. Sieradzki, Nat. Mater. 12, 1102 (2013).CrossRefGoogle Scholar
  7. 7.
    O. Okman and J.W. Kysar, J. Alloys Compd. 509, 6374 (2011).CrossRefGoogle Scholar
  8. 8.
    M. Hakamada and M. Mabuchi, J. Alloys Compd. 485, 583 (2009).CrossRefGoogle Scholar
  9. 9.
    L. Wang, N.J. Briot, P.D. Swartzentruber, and T.J. Balk, Metall. Mater. Trans. A 45, 1 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. Qi and J. Weissmüller, ACS Nano 7, 5948 (2013).CrossRefGoogle Scholar
  11. 11.
    I. McCue, B. Gaskey, P. Geslin, A. Karma, and J. Erlebacher, Acta Mater. 115, 10 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Geslin, I. McCue, B. Gaskey, J. Erlebacher, and A. Karma, Nat. Commun. 6, 8887 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Harrison and C. Wagner, Acta Metall. 7, 722 (1959).CrossRefGoogle Scholar
  14. 14.
    T. Wada, K. Yubuta, A. Inoue, and H. Kato, Mater. Lett. 65, 1076 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Tsuda, T. Wada, and H. Kato, J. Appl. Phys. 114, 113503 (2013).CrossRefGoogle Scholar
  16. 16.
    Y.K. Chen-Wiegart, T. Wada, N. Butakov, X. Xiao, F. De Carlo, H. Kato, J. Wang, D.C. Dunand, and E. Maire, J. Mater. Res. 28, 2444 (2013).CrossRefGoogle Scholar
  17. 17.
    I.V. Okulov, J. Weissmüller, and J. Markmann, Sci. Rep. 7, 20 (2017).CrossRefGoogle Scholar
  18. 18.
    I. McCue, S. Ryan, K. Hemker, X. Xu, N. Li, M. Chen, and J. Erlebacher, Adv. Eng. Mater. 18, 46 (2016).CrossRefGoogle Scholar
  19. 19.
    T. Wada, K. Yubuta, and H. Kato, Scr. Mater. 118, 33 (2016).CrossRefGoogle Scholar
  20. 20.
    T. Wada, A.D. Setyawan, K. Yubuta, and H. Kato, Scr. Mater. 65, 532 (2011).CrossRefGoogle Scholar
  21. 21.
    L.S. Darken, Trans. Am. Inst. Min. Eng. 175, 184 (1948).Google Scholar
  22. 22.
    C.P. Flynn, J. Phys. Condens. Matter 18, S439 (2006).CrossRefGoogle Scholar
  23. 23.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  24. 24.
    H.W. King, J. Mater. Sci. 1, 79 (1966).CrossRefGoogle Scholar
  25. 25.
    F. Seitz, Acta Metall. 1, 355 (1953).CrossRefGoogle Scholar
  26. 26.
    D.B. Butrymowicz, J.R. Manning, and M.E. Read, J. Phys. Chem. Ref. Data 5, 103 (1976).CrossRefGoogle Scholar
  27. 27.
    G.V. Kidson, Can. J. Phys. 41, 1563 (1963).CrossRefGoogle Scholar
  28. 28.
    D.B. Butrymowicz, J.R. Manning, and M.E. Read, J. Phys. Chem. Ref. Data 4, 177 (1975).CrossRefGoogle Scholar
  29. 29.
    Y. Iijima, K. Hoshino, and K.-I. Hirano, Metall. Trans. A 8, 997 (1977).CrossRefGoogle Scholar
  30. 30.
    R. Balluffi, Acta Metall. 2, 194 (1954).CrossRefGoogle Scholar
  31. 31.
    S.H. Wang, D.K. Matlock, and D.L. Olson, Mater. Sci. Eng. A 167, 139 (1993).CrossRefGoogle Scholar
  32. 32.
    V. Ganesan, V. Seetharaman, and V.S. Raghunathan, Mater. Lett. 2, 257 (1984).CrossRefGoogle Scholar
  33. 33.
    D. Ansel, I. Thibon, M. Boliveau, and J. Debuigne, Acta Mater. 46, 423 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Material Science and Engineering DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations