Advertisement

JOM

, Volume 69, Issue 11, pp 2113–2124 | Cite as

Topologically Close-packed Phase Formation in High Entropy Alloys: A Review of Calphad and Experimental Results

  • K. Guruvidyathri
  • K. C. Hari Kumar
  • J. W. Yeh
  • B. S. Murty
Article
  • 574 Downloads

Abstract

One of the major challenges in high entropy alloy (HEA) research is to obtain single-phase solid solutions by proper selection of components and processing techniques. Often one encounters situations where topologically close-packed (TCP) phases are present in the HEA microstructures. TCP phases are a class of intermetallic phases that are in general considered undesirable. The ability to predict these phases in HEAs using the Calphad (CALculation of PHAse Diagrams) method has been shown to accelerate the identification of promising compositions. In this review, an analysis of the reported Calphad studies and corresponding microstructural information on HEAs is done to evaluate the success of the Calphad method for TCP phases. A total of 52 alloys with 123 post-heat treatment microstructures reported so far have been compared. Challenges and issues in experiments and calculations are brought out with a possible way forward.

References

  1. 1.
    S. Ranganathan, Curr. Sci. 85, 1404 (2003).Google Scholar
  2. 2.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  3. 3.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).CrossRefGoogle Scholar
  4. 4.
    B.S. Murty, J.W. Yeh, and S. Ranganathan, High Entropy Alloys (London: Butterworth-Heinemann, 2014).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).CrossRefGoogle Scholar
  6. 6.
    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications (Berlin: Springer, 2016).CrossRefGoogle Scholar
  7. 7.
    E.J. Pickering and N.G. Jones, Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
  8. 8.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  9. 9.
    J.H. Westbrook and R.L. Fleischer, Intermetallic Compounds-Crystal Structures of Intermetallic Compounds (West Sussex: Wiley, 2000).Google Scholar
  10. 10.
    B. Geddes, H. Leon, and X. Huang, Superalloys: Alloying and Performance (Ohio: ASM International, 2010).Google Scholar
  11. 11.
    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).CrossRefGoogle Scholar
  12. 12.
    M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen, and Y.S. Huang, Metall. Mater. Trans. A 37, 1363 (2006).CrossRefGoogle Scholar
  13. 13.
    M.H. Tsai, H. Yuan, G. Cheng, W. Xu, W.W. Jian, M.H. Chuang, C.C. Juan, A.C. Yeh, S.J. Lin, and Y. Zhu, Intermetallics 33, 81 (2013).CrossRefGoogle Scholar
  14. 14.
    W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Shun, L. Chang, and M. Shiu, Mater. Charact. 70, 63 (2012).CrossRefGoogle Scholar
  16. 16.
    F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Acta Mater. 112, 40 (2016).CrossRefGoogle Scholar
  17. 17.
    M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
  18. 18.
    C. Ng, S. Guo, J. Luan, S. Shi, and C.T. Liu, Intermetallics 31, 165 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  20. 20.
    B. Ramakrishna Rao, M. Srinivas, A.K. Shah, A.S. Gandhi, and B.S. Murty, Intermetallics 35, 73 (2013).CrossRefGoogle Scholar
  21. 21.
    C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (Boca Raton: CRC Press, 2011).Google Scholar
  22. 22.
    W. Hume-Rothery and H.M. Powell, Zeitschrift Für Krist. Mater. 91, 23 (1935).Google Scholar
  23. 23.
    N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams) A Comprehensive Guide (Oxford: Pergamon, 1998).Google Scholar
  24. 24.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method (Cambridge: Cambridge University Press, 2007).CrossRefMATHGoogle Scholar
  25. 25.
    F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, CALPHAD 45, 1 (2014).CrossRefGoogle Scholar
  26. 26.
    Thermo-Calc Thermodynamic Equilibrium Calculations. Thermo-Calc Software, Stockholm, Sweden. http://www.thermocalc.com
  27. 27.
    Pandat™ Thermodynamic Calculations and Kinetic Simulations. CompuTherm LLC, Madison, WI, 53719, USA. http://www.computherm.com
  28. 28.
    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, CALPHAD 50, 32 (2015).CrossRefGoogle Scholar
  29. 29.
    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).CrossRefGoogle Scholar
  30. 30.
    R. Raghavan, K.C. Hari Kumar, and B.S. Murty, J. Alloys Compd. 544, 152 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Durga, K.C. Hari Kumar, and B.S. Murty, Trans. Indian Inst. Met. 65, 375 (2012).CrossRefGoogle Scholar
  32. 32.
    E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Scr. Mater. 113, 106 (2016).CrossRefGoogle Scholar
  33. 33.
    H. Chou, Y. Chang, S. Chen, and J. Yeh, Mater. Sci. Eng. B 163, 184 (2009).CrossRefGoogle Scholar
  34. 34.
    J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. De Hosson, Acta Mater. 131, 206 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski, J. Alloys Compd. 688, 994 (2016).CrossRefGoogle Scholar
  36. 36.
    K. Kulkarni and G.P.S. Chauhan, AIP Adv. 5, 97162 (2015).CrossRefGoogle Scholar
  37. 37.
    A. Paul, Scr. Mater. 135, 153 (2017).CrossRefGoogle Scholar
  38. 38.
    K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Scr. Mater. 135, 158 (2017).CrossRefGoogle Scholar
  39. 39.
    C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, J. Alloys Compd. 486, 427 (2009).CrossRefGoogle Scholar
  40. 40.
    C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloys Compd. 490, 160 (2010).CrossRefGoogle Scholar
  41. 41.
    A.M. Manzoni, H.M. Daoud, R. Voelkl, U. Glatzel, and N. Wanderka, Ultramicroscopy 159, 265 (2015).CrossRefGoogle Scholar
  42. 42.
    C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).CrossRefGoogle Scholar
  43. 43.
    Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, J. Alloys Compd. 488, 57 (2009).CrossRefGoogle Scholar
  44. 44.
    T. Shun and Y. Du, J. Alloys Compd. 479, 157 (2009).CrossRefGoogle Scholar
  45. 45.
    T.T. Shun, C.H. Hung, and C.F. Lee, J. Alloys Compd. 495, 55 (2010).CrossRefGoogle Scholar
  46. 46.
    M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Mater. Res. Lett. 1, 207 (2013).CrossRefGoogle Scholar
  47. 47.
    W. Sun, X. Huang, and A.A. Luo, CALPHAD. 56, 19 (2017).CrossRefGoogle Scholar
  48. 48.
    K.C. Hsieh, C.F. Yu, W.T. Hsieh, W.R. Chiang, J.S. Ku, J.H. Lai, C.P. Tu, and C.C. Yang, J. Alloys Compd. 483, 209 (2009).CrossRefGoogle Scholar
  49. 49.
    S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).CrossRefGoogle Scholar
  50. 50.
    T.M. Butler and M.L. Weaver, J. Alloys Compd. 691, 119 (2017).CrossRefGoogle Scholar
  51. 51.
    C.M. Lin and H.L. Tsai, Intermetallics 19, 288 (2011).CrossRefGoogle Scholar
  52. 52.
    Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, and P.K. Liaw, Mater. Sci. Eng. A 647, 229 (2015).CrossRefGoogle Scholar
  53. 53.
    C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, and P.K. Liaw, Mater. Des. 109, 425 (2016).CrossRefGoogle Scholar
  54. 54.
    H.R. Sistla, J.W. Newkirk, and F. Frank, Liou. Mater. Des. 81, 113 (2015).CrossRefGoogle Scholar
  55. 55.
    K. Guruvidyathri, R. Kirana, M. Vaidya, B.S. Murty, and K.C. Hari Kumar, Unpublished Research.Google Scholar
  56. 56.
    H. Zhang, Y. Pan, and Y. He, J. Therm. Spray Technol. 20, 1049 (2011).CrossRefGoogle Scholar
  57. 57.
    Y. Yu, W.M. Liu, T.B. Zhang, J.S. Li, J. Wang, H.C. Kou, and J. Li, Metall. Mater. Trans. A 45, 201 (2014).CrossRefGoogle Scholar
  58. 58.
    K. Guruvidyathri, K. C. Hari Kumar, J. W. Yeh, and B. S. Murty, Unpublished Research.Google Scholar
  59. 59.
    T. Zuo, S. Ren, P.K. Liaw, and Y. Zhang, Int. J. Miner. Metall. Mater. 20, 549 (2013).CrossRefGoogle Scholar
  60. 60.
    N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M. Tikhonovsky, and G. Salishchev, J. Alloys Compd. 652, 266 (2015).CrossRefGoogle Scholar
  61. 61.
    N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, and S.V. Zherebtsov, Mater. Lett. 188, 162 (2016).CrossRefGoogle Scholar
  62. 62.
    C. Ng, S. Guo, J. Luan, Q. Wang, J. Lu, S. Shi, and C.T. Liu, J. Alloys Compd. 584, 530 (2014).CrossRefGoogle Scholar
  63. 63.
    D.G. Shaysultanov, G.A. Salishchev, Y.V. Ivanisenko, S.V. Zherebtsov, M.A. Tikhonovsky, and N.D. Stepanov, J. Alloys Compd. 705, 756 (2017).CrossRefGoogle Scholar
  64. 64.
    N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky, Mater. Sci. Technol. 31, 1184 (2015).CrossRefGoogle Scholar
  65. 65.
    D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Acta Mater. 98, 288 (2015).CrossRefGoogle Scholar
  66. 66.
    F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
  67. 67.
    G. Bracq, M. Laurent-Brocq, L. Perrière, R. Pirès, J. M. Joubert, and I. Guillot, Acta Mater. 128, 327 (2017).Google Scholar
  68. 68.
    B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Acta Mater. 96, 258 (2015).CrossRefGoogle Scholar
  69. 69.
    J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Intermetallics 55, 9 (2014).CrossRefGoogle Scholar
  70. 70.
    N. Park, B.J. Lee, and N. Tsuji, J. Alloys Compd. 719, 189 (2017).CrossRefGoogle Scholar
  71. 71.
    M. Gao and D. Alman, Entropy 15, 4504 (2013).CrossRefGoogle Scholar
  72. 72.
    A.J. Zaddach, R.O. Scattergood, and C.C. Koch, Mater. Sci. Eng. A 636, 373 (2015).CrossRefGoogle Scholar
  73. 73.
    K. Guruvidyathri, B. S. Murty, and K. C. Hari Kumar, Unpublished Research.Google Scholar
  74. 74.
    O.N. Senkov, F. Zhang, and J.D. Miller, Entropy 15, 3796 (2013).CrossRefGoogle Scholar
  75. 75.
    O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).CrossRefGoogle Scholar
  76. 76.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).CrossRefGoogle Scholar
  77. 77.
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
  78. 78.
    O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A 565, 51 (2013).CrossRefGoogle Scholar
  79. 79.
    K.C. Hari Kumar and P. Wollants, J. Alloys Compd. 320, 189 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • K. Guruvidyathri
    • 1
    • 2
  • K. C. Hari Kumar
    • 1
  • J. W. Yeh
    • 2
  • B. S. Murty
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations