Skip to main content
Log in

Thermal Conductivity of Compounds Present in the Side Ledge in Aluminium Electrolysis Cells

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper presents a database for the temperature-dependent thermal conductivity of compounds potentially present in the side ledge formed in aluminium electrolysis cells, between the molten electrolyte used to dissolve the alumina and the side wall. The database is given in the form of an analytical model with sets of parameters for each compound. To determine the model parameters, we considered a robust optimisation approach based on reliable models derived from fundamental physics. Where data are missing, first-principles calculations are utilized to estimate the parameters directly. For all compounds for which data are available, the model’s predictions are found to be in very good agreement with reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.E. Haupin, JOM 23, 41 (2015).

    Article  Google Scholar 

  2. G. Totten and D. MacKenzie, Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing. Handbook of Aluminum (Boca Raton: CRC Press, 2003).

  3. D.T. Morelli and G.A. Slack, High Thermal Conductivity Materials (New York: Springer, 2006).

    Google Scholar 

  4. A.E. Gheribi and P. Chartrand, Calphad 39, 70 (2012).

    Article  Google Scholar 

  5. A.E. Gheribi, S. Poncsák, R. St-Pierre, L.I. Kiss, and P. Chartrand, J. Chem. Phys. 141, 104508 (2014).

    Article  Google Scholar 

  6. A.E. Gheribi, M. Salanne, and P. Chartrand, J. Chem. Phys. 142, 124109 (2015).

    Article  Google Scholar 

  7. A.E. Gheribi, A. Seifitokaldani, P. Wu, and P. Chartrand, J. Appl. Phys. 118, 145101 (2015).

    Article  Google Scholar 

  8. A.E. Gheribi and P. Chartrand, J. Am. Ceram. Soc. 98, 888 (2015).

    Article  Google Scholar 

  9. A. Seifitokaldani and A.E. Gheribi, Comput. Mater. Sci. 108(Part A), 17 (2015).

  10. A. Seifitokaldani, A.E. Gheribi, M. Doll, and P. Chartrand, J. Alloys Compd. 662, 240 (2016).

    Article  Google Scholar 

  11. A.E. Gheribi, J.A. Torres, and P. Chartrand, Sol. Energy Mater. Sol. Cells 126, 11 (2014).

    Article  Google Scholar 

  12. A.E. Gheribi, M. Salanne, and P. Chartrand, J. Phys. Chem. C 120, 22873 (2016).

    Article  Google Scholar 

  13. A.E. Gheribi, S. Poncsk, L. Kiss, S. Gurard, J.-F. Bilodeau, and P. Chartrand, ACS Omega 2, 2224 (2017).

    Article  Google Scholar 

  14. A.E. Gheribi, S. Poncsk, S. Gurard, J.-F. Bilodeau, L. Kiss, and P. Chartrand, J. Chem. Phys. 146, 114701 (2017).

    Article  Google Scholar 

  15. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  Google Scholar 

  16. J. Callaway, Phys. Rev. 120, 1149 (1960)

    Article  Google Scholar 

  17. G. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  Google Scholar 

  18. J. Poirier, Introduction to the Physics of the Earth’s Interior. (Cambridge: Cambridge University Press, 2000).

    Book  Google Scholar 

  19. M. Blanco, E. Francisco, and V. Luaa, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  20. C. Toher, J.J. Plata, O. Levy, M. de Jong, M. Asta, M.B. Nardelli, and S. Curtarolo, Phys. Rev. B 90, 174107 (2014).

    Article  Google Scholar 

  21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  Google Scholar 

  23. G. Kresse and J. Furthmller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. G. Kresse and Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  26. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  Google Scholar 

  29. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013)

  30. B.W. Woods, S.A. Payne, J.E. Marion, R.S. Hughes, and L.E. Davis, J. Opt. Soc. Am. B 8, 970 (1991).

    Article  Google Scholar 

  31. A.E. Gheribi, J.-L. Gardarein, F. Rigollet, and P. Chartrand, APL Mater. 2, 076105 (2014).

    Article  Google Scholar 

  32. A.E. Gheribi, J.-L. Gardarein, E. Autissier, F. Rigollet, M. Richou, and P. Chartrand, Appl. Phys. Lett. 107, 094102 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan. Computations were carried out on supercomputers managed by Calcul-Québec and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïmen E. Gheribi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheribi, A.E., Chartrand, P. Thermal Conductivity of Compounds Present in the Side Ledge in Aluminium Electrolysis Cells. JOM 69, 2412–2417 (2017). https://doi.org/10.1007/s11837-017-2563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2563-8

Navigation