Advertisement

JOM

, Volume 69, Issue 11, pp 2229–2236 | Cite as

On the Measurement of Power Law Creep Parameters from Instrumented Indentation

  • P. Sudharshan Phani
  • W. C. Oliver
  • G. M. Pharr
Article
  • 412 Downloads

Abstract

Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

Notes

Acknowledgements

WCO and GMP’s contributions to this work were supported in part by the National Science Foundation under Grant Number DMR-1427812.

References

  1. 1.
    A.G. Atkins and D. Tabor, J. Mech. Phys. Solids 13, 149 (1965).CrossRefGoogle Scholar
  2. 2.
    S. Jayaraman, G.T. Hahn, W.C. Oliver, C.A. Rubin, and P.C. Bastias, Int. J. Solids Struct. 35, 365 (1998).CrossRefGoogle Scholar
  3. 3.
    A.E. Giannakopoulos and S. Suresh, Scripta Mater. 40, 1191 (1999).CrossRefGoogle Scholar
  4. 4.
    M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Sakai, T. Akatsu, S. Numata, and K. Matsuda, J. Mater. Res. 18, 2087 (2003).CrossRefGoogle Scholar
  6. 6.
    J.L. Bucaille, S. Stauss, E. Felder, and J. Michler, Acta Mater. 51, 1663 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Shim, J.-I. Jang, and G.M. Pharr, Acta Mater. 56, 3824 (2008).CrossRefGoogle Scholar
  8. 8.
    L. Zhang, F. Yang, L. Sun, and Y.-H. Guo, Chin. Rare Earths 38, 126 (2017).Google Scholar
  9. 9.
    J. Wu, S.-B. Xue, J.-W. Wang, S. Liu, Y.-L. Han, and L.-J. Wang, J. Mater. Sci. Mater. Electron. 27, 12729 (2016).CrossRefGoogle Scholar
  10. 10.
    J. Zhu, H. Xie, and Z. Liu, Chin. J. Theor. Appl. Mech. 45, 45 (2013).Google Scholar
  11. 11.
    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).CrossRefGoogle Scholar
  12. 12.
    P.S. Phani and W.C. Oliver, Acta Mater. 111, 31 (2016).CrossRefGoogle Scholar
  13. 13.
    I.-C. Choi, B.-G. Yoo, Y.-J. Kim, and J. Jang, J. Mater. Res. 27, 3 (2012).CrossRefGoogle Scholar
  14. 14.
    A.J. Harris, B.D. Beake, D.E.J. Armstrong, and M.I. Davies, Exp. Mech. 1 (2016)Google Scholar
  15. 15.
    J.C.M. Li, Mater. Sci. Eng. A 322, 23 (2002).CrossRefGoogle Scholar
  16. 16.
    T.H. Hyde, K.A. Yehia, and A.A. Becker, Int. J. Mech. Sci. 35, 451 (1993).CrossRefGoogle Scholar
  17. 17.
    O.D. Sherby and P.E. Armstrong, Metall. Trans. B 2, 3479 (1971).CrossRefGoogle Scholar
  18. 18.
    P.M. Sargent and M.F. Ashby, Mater. Sci. Technol. 8, 594 (1992).CrossRefGoogle Scholar
  19. 19.
    S. Sakai, Y. Watanabe, S. Izumi, A. Iwasaki, and T. Ogawa, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP, 7, 301 (2005)Google Scholar
  20. 20.
    U.P. Singh and H.D. Merchant, Metall. Trans. 4, 2621 (1973).CrossRefGoogle Scholar
  21. 21.
    M. Kim, K.P. Marimuthu, S. Jung, and H. Lee, Comput. Mater. Sci. 113, 211 (2016).CrossRefGoogle Scholar
  22. 22.
    D. Mulhearn and T.O. Tabor, J. Inst. Met. 89, 7 (1960).Google Scholar
  23. 23.
    B. Lucas (Ph.D. Dissertation, University of Tennessee, Knoxville, 1997)Google Scholar
  24. 24.
    V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken, J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
  25. 25.
    M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).CrossRefGoogle Scholar
  26. 26.
    V. Raman and R. Berriche, J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
  27. 27.
    G.M. Pharr, E.G. Herbert, and Y. Gao, Annu. Rev. Mater. Res. 40, 271 (2010).CrossRefGoogle Scholar
  28. 28.
    P. Sudharshan Phani and W.C. Oliver, Mater. (Basel) 10, 663 (2017).CrossRefGoogle Scholar
  29. 29.
    C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, and G.M. Pharr, J. Mech. Phys. Solids 61, 517 (2013).CrossRefGoogle Scholar
  30. 30.
    L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Mater. Sci. Eng. A 532, 505 (2012).CrossRefGoogle Scholar
  31. 31.
    N.J. Martinez and Y.-L. Shen, J. Mater. Eng. Perform. 25, 1109 (2016).CrossRefGoogle Scholar
  32. 32.
    J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne, Acta Mater. 80, 56 (2014).CrossRefGoogle Scholar
  33. 33.
    R. Goodall and T.W. Clyne, Acta Mater. 54, 5489 (2006).CrossRefGoogle Scholar
  34. 34.
    V. Maier, B. Merle, M. Göken, and K. Durst, J. Mater. Res. 28, 1177 (2013).CrossRefGoogle Scholar
  35. 35.
    A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, Proc. R. Soc. London. Ser. A Math. Phys. Sci. 441, 97 (1993).CrossRefGoogle Scholar
  36. 36.
    H. Takagi, M. Dao, M. Fujiwara, and M. Otsuka, Philos. Mag. 83, 3959 (2003).CrossRefGoogle Scholar
  37. 37.
    H. Takagi, M. Dao, and M. Fujiwara, Mater. Trans. 55, 275 (2014).CrossRefGoogle Scholar
  38. 38.
    N.Q. Chinh and P. Szommer, Mater. Sci. Eng. A 611, 333 (2014).CrossRefGoogle Scholar
  39. 39.
    H. Takagi and M. Fujiwara, Mater. Sci. Eng. A 602, 98 (2014).CrossRefGoogle Scholar
  40. 40.
    S. Fujisawa, A. Yonezu, M. Noda, and B. Xu, J. Eng. Mater. Technol. 139, 21004 (2017).CrossRefGoogle Scholar
  41. 41.
    M.E. Cordova and Y.-L. Shen, J. Mater. Sci. 50, 1394 (2016).CrossRefGoogle Scholar
  42. 42.
    Y.-T. Cheng and C.-M. Cheng, Philos. Mag. Lett. 81, 9 (2001).CrossRefGoogle Scholar
  43. 43.
    V.M.F. Marques, B. Wunderle, C. Johnston, and P.S. Grant, Acta Mater. 61, 2471 (2013).CrossRefGoogle Scholar
  44. 44.
    A.A. Elmustafa, S. Kose, and D.S. Stone, J. Mater. Res. 22, 926 (2007).CrossRefGoogle Scholar
  45. 45.
    H. Oikawa, H. Sato, and K. Maruyama, Mater. Sci. Eng. 75, 21 (1985).CrossRefGoogle Scholar
  46. 46.
    Z. Tobolová and J. Čadek, Philos. Mag. 26, 1419 (1972).CrossRefGoogle Scholar
  47. 47.
    I.S. Servi and N.J. Grant, Trans. AIME 191, 909 (1951).Google Scholar
  48. 48.
    T. Altan and F.W. Boulger, J. Eng. Ind. 95, 1009 (1973).CrossRefGoogle Scholar
  49. 49.
    B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30, 601 (1999).CrossRefGoogle Scholar
  50. 50.
    O.D. Sherby, R.H. Klundt, and A.K. Miller, Metall. Trans. A 8, 843 (1977).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia
  2. 2.Nanomechanics Inc.Oak RidgeUSA
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations