JOM

, Volume 69, Issue 11, pp 2214–2226 | Cite as

Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

  • J. Snel
  • M. A. Monclús
  • M. Castillo-Rodríguez
  • N. Mara
  • I. J. Beyerlein
  • J. Llorca
  • J. M. Molina-Aldareguía
Article
  • 196 Downloads

Abstract

The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The analysis suggests that room temperature deformation was determined by dislocation glide at larger layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. A deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.

Notes

Acknowledgements

This investigation was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant VIRMETAL, Grant Agreement No. 669141). IJB acknowledges financial support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) program (NSF CMMI-1729887). Useful discussions during the course of this work from Prof. Sybrand van der Zwaag are gratefully acknowledged. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

References

  1. 1.
    J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  3. 3.
    N.A. Mara, D. Bhattacharyya, R.G. Hoagland, and A. Misra, Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Hattar, A. Misra, M.R.F. Dosanjh, P. Dickerson, I.M. Robertson, and R.G. Hoagland, J. Eng. Mater. Technol. 134, 21014 (2012).CrossRefGoogle Scholar
  5. 5.
    J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara, Philos. Mag. 93, 718 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara, Nat. Commun. 4, 1696 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).CrossRefGoogle Scholar
  8. 8.
    N.A. Mara, A. Misra, R.G. Hoagland, A.V. Sergueeva, T. Tamayo, P. Dickerson, and A.K. Mukherjee, Mater. Sci. Eng., A 493, 274 (2008).CrossRefGoogle Scholar
  9. 9.
    N.A. Mara, A. Sergueeva, A. Misra, and A.K. Mukherjee, Scr. Mater. 50, 803 (2004).CrossRefGoogle Scholar
  10. 10.
    N.A. Mara, T. Tamayo, A.V. Sergueeva, X. Zhang, A. Misra, and A.K. Mukherjee, Thin Solid Films 515, 3241 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Misra, R.G. Hoagland, and H. Kung, Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2011).CrossRefGoogle Scholar
  13. 13.
    S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, and I.J. Beyerlein, Acta Mater. 79, 282 (2014).CrossRefGoogle Scholar
  14. 14.
    M.A. Monclús, S.J. Zheng, J.R. Mayeur, I.J. Beyerlein, N.A. Mara, T. Polcar, J. Llorca, and J.M. Molina-Aldareguía, APL Mater. 1, 52103 (2013).CrossRefGoogle Scholar
  15. 15.
    J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).CrossRefGoogle Scholar
  16. 16.
    G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler, Philos. Mag. 95, 1878 (2014).CrossRefGoogle Scholar
  17. 17.
    I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
  18. 18.
    S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. 60, 5858 (2012).CrossRefGoogle Scholar
  19. 19.
    S. Lotfian, M. Rodríguez, K.E. Yazzie, N. Chawla, J. Llorca, and J.M. Molina-Aldareguía, Acta Mater. 61, 4439 (2013).CrossRefGoogle Scholar
  20. 20.
    R. Raghavan, J.M. Wheeler, D. Esqué-de los Ojos, K. Thomas, E. Almandoz, G.G. Fuentes, and J. Michler, Mater. Sci. Eng. A 620, 375 (2014).CrossRefGoogle Scholar
  21. 21.
    R. Raghavan, J.M. Wheeler, T.P. Harzer, V. Chawla, S. Djaziri, K. Thomas, B. Philippi, C. Kirchlechner, B.N. Jaya, J. Wehrs, J. Michler, and G. Dehm, Acta Mater. 100, 73 (2015).CrossRefGoogle Scholar
  22. 22.
    X.Y. Zhu, J.T. Luo, F. Zeng, and F. Pan, Thin Solid Films 520, 818 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Misra and R.G. Hoagland, J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
  24. 24.
    Y.A. Chang and L. Himmel, J. Appl. Phys. 37, 3567 (1966).CrossRefGoogle Scholar
  25. 25.
    R.L. Coble, J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
  26. 26.
    O.A. Ruano, O.D. Sherby, J. Wadsworth, and J. Wolfenstine, Mater. Sci. Eng., A 211, 66 (1996).CrossRefGoogle Scholar
  27. 27.
    T. Surholt and C. Herzig, Acta Mater. 45, 3817 (1997).CrossRefGoogle Scholar
  28. 28.
    D.B. Butrymowicz, J.R. Manning, and M.E. Read, J. Phys. Chem. Ref. Data 2, 643 (1973).CrossRefGoogle Scholar
  29. 29.
    M.A. Meyers, A. Mishra, D.J. Benson, and A. Mishra, Prog. Mater Sci. 51, 427 (2006).CrossRefGoogle Scholar
  30. 30.
    Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Mater. Sci. Eng., A 381, 71 (2004).CrossRefGoogle Scholar
  31. 31.
    M.E. Kassner and M.T. Pérez-Prado, Prog. Mater Sci. 45, 1 (2000).CrossRefGoogle Scholar
  32. 32.
    J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler, JOM 67, 1684 (2015).CrossRefGoogle Scholar
  33. 33.
    N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).CrossRefGoogle Scholar
  34. 34.
    H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon Press, 1982).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2017

Authors and Affiliations

  • J. Snel
    • 1
  • M. A. Monclús
    • 1
  • M. Castillo-Rodríguez
    • 1
  • N. Mara
    • 2
  • I. J. Beyerlein
    • 3
  • J. Llorca
    • 1
    • 4
  • J. M. Molina-Aldareguía
    • 1
  1. 1.IMDEA Materials InstituteGetafeSpain
  2. 2.Institute for Materials Science and Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA
  3. 3.University of CaliforniaSanta BarbaraUSA
  4. 4.Department of Materials SciencePolytechnic University of Madrid. E.T.S. de Ingenieros de CaminosMadridSpain

Personalised recommendations