JOM

, Volume 69, Issue 11, pp 2345–2351 | Cite as

New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals

  • Tong Yue
  • Haisheng Han
  • Yuehua Hu
  • Wei Sun
  • Xiaodong Li
  • Runqing Liu
  • Zhiyong Gao
  • Li Wang
  • Pan Chen
  • Chenyang Zhang
  • Mengjie Tian
Article

Abstract

Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.

Notes

Acknowledgements

This work was supported by the Innovation Driven Plan of Central South University (No. 2015CX005), National Natural Science Foundation (No. 51634009), the 111 Project (No. B14034), and Collaborative Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources.

Supplementary material

11837_2017_2531_MOESM1_ESM.docx (469 kb)
Supplementary material 1 (DOCX 468 kb)

References

  1. 1.
    L. Deng, H. Zhong, S. Wang, and G. Liu, Sep. Purif. Technol. 145, 8 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Arnold and L.J. Warren, J. Colloid Interf. Sci. 47, 134 (1974).CrossRefGoogle Scholar
  3. 3.
    O. Ozcan and A.N. Bulutcu, Int. J. Miner. Process. 39, 275 (1993).CrossRefGoogle Scholar
  4. 4.
    L. Deng, G. Zhao, H. Zhong, S. Wang, and G. Liu, J. Ind. Eng. Chem. 33, 131 (2016).CrossRefGoogle Scholar
  5. 5.
    L. Yongxin and L. Changgen, Int. J. Miner. Process. 10, 205 (1983).CrossRefGoogle Scholar
  6. 6.
    Q. Shi, Q. Feng, G. Zhang, and H. Deng, Miner. Eng. 55, 186 (2014).CrossRefGoogle Scholar
  7. 7.
    J.F. Oliveira and J.A. Sampaio, Prod. Process. Fine Part. 81, 209 (1988).Google Scholar
  8. 8.
    R. Sivamohan, Production & Processing of Fine Particles (1988), pp. 337–351.Google Scholar
  9. 9.
    F. Bo, L. Xianping, W. Jinqing, and W. Pengcheng, Miner. Eng. 80, 45 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Changgen and L. Yongxin, Int. J. Miner. Process. 10, 219 (1983).CrossRefGoogle Scholar
  11. 11.
    C. Hiçyìlmaz, Ü. Atalay, and G. Özbayoglu, Miner. Eng. 6, 313 (1993).CrossRefGoogle Scholar
  12. 12.
    Y. Hu, F. Yang, and W. Sun, Miner. Eng. 24, 82 (2011).CrossRefGoogle Scholar
  13. 13.
    M.R. Atademir, J.A. Kitchener, and H.L. Shergold, J. Colloid Interface Sci. 71, 466 (1979).CrossRefGoogle Scholar
  14. 14.
    O. Ozcan and A.N. Bulutcu, Int. J. Miner. Process. 39, 275 (1993).CrossRefGoogle Scholar
  15. 15.
    O. Ozcan, A.N. Bulutcu, P. Sayan, and O. Recepoglu, Int. J. Miner. Process. 42, 111 (1994).CrossRefGoogle Scholar
  16. 16.
    H. Han, Y. Hu, W. Sun, X. Li, C. Cao, R. Liu, T. Yue, X. Meng, Y. Guo, J. Wang, Z. Gao, P. Chen, W. Huang, J. Liu, J. Xie, and Y. Chen, Int. J. Miner. Process. 159, 22 (2017).CrossRefGoogle Scholar
  17. 17.
    X. Zhou and R. Lin, Multipurp. Util. Miner. Resour. 02, 1 (2000).Google Scholar
  18. 18.
    Q. Xiao, C. Li, and G. Kang, Min. Metall. 3, 26 (1996).Google Scholar
  19. 19.
    M.C. Fuerstenau, Process Fundamentals (2005), pp. 33–55.Google Scholar
  20. 20.
    M.C. Fuerstenau, J.D. Miller, R.E. Pray, and B.F. Perinne, Soc. Min. Eng. 235, 359 (1966).Google Scholar
  21. 21.
    M.C. Fuerstenau and W.F. Cummins Jr., Int. J. Refract. Met. H. 238, 196 (1967).Google Scholar
  22. 22.
    T. Sreenivas and N.P.H. Padmanabhan, Colloids Surf. A 205, 47 (2002).CrossRefGoogle Scholar
  23. 23.
    S.M. Assis, L.C.M. Montenegro, and A.E.C. Peres, Miner. Eng. 9, 103 (1996).CrossRefGoogle Scholar
  24. 24.
    G. Zhao, H. Zhong, X. Qiu, S. Wang, Y. Gao, Z. Dai, J. Huang, and G. Liu, Miner. Eng. 49, 54 (2013).CrossRefGoogle Scholar
  25. 25.
    C. Zhong, Y. Gao, X. Qiu, and Q Feng. China Tungsten Ind. 2, 22 (2013).Google Scholar
  26. 26.
    L.N. Lapatnick, J.F. Hazel, and W.M. Mcnabb, Anal. Chim. Acta 36, 366 (1966).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Tong Yue
    • 1
  • Haisheng Han
    • 1
  • Yuehua Hu
    • 1
  • Wei Sun
    • 1
  • Xiaodong Li
    • 2
  • Runqing Liu
    • 1
  • Zhiyong Gao
    • 1
  • Li Wang
    • 1
  • Pan Chen
    • 1
  • Chenyang Zhang
    • 1
  • Mengjie Tian
    • 1
  1. 1.School of Mineral Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Hu Nan Shizhuyuan Non-ferrous Metal Limited Liability CorporationChenzhouChina

Personalised recommendations