, Volume 69, Issue 11, pp 2335–2344 | Cite as

Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints

  • J. R. Kish
  • N. Birbilis
  • E. M. McNally
  • C. F. Glover
  • X. Zhang
  • J. R. McDermid
  • G. Williams


A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.



We thank the Automotive Partnerships Canada (APC) program for providing financial support and the Magnesium Front End Research and Development (MFERD) partnership for providing the front end sub-assemblies for testing.


  1. 1.
    T.B. Abbott, Corrosion 71, 120 (2014).CrossRefGoogle Scholar
  2. 2.
    W.J. Joost, JOM 64, 1032 (2012).CrossRefGoogle Scholar
  3. 3.
    W.J. Joost and P.E. Krajewski, Scri. Mater. 128, 107 (2017).CrossRefGoogle Scholar
  4. 4.
    M.P. Brady, W.J. Joost, and C.D. Warren, Corrosion 73, 452 (2017).CrossRefGoogle Scholar
  5. 5.
    A.A. Luo, E.A. Nyberg, K. Sadayappan, and W. Shi, Adv. Mater. Perform. 166, 35 (2008).Google Scholar
  6. 6.
    A.A. Luo, E.A. Nyberg, K. Sadayappan, and W. Shi, Magnesium Technology 2008, ed. M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, and E.A. Nyberg (Warrendale: TMS, 2008), p. 3.Google Scholar
  7. 7.
    R.C. McCune, J. Forsmark, B. Schneider, A. Luo, H. Gu, W. Schumacher, X. Chen, and F. Vartolas, SAE Int. J. Mater. Manuf. 6, 242 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Pebere, C. Riera, and F. Dabosi, Electrochim. Acta 35, 555 (1990).CrossRefGoogle Scholar
  9. 9.
    T. Beldjoudi, C. Fiaud, and L. Robbiola, Corrosion 49, 738 (1993).CrossRefGoogle Scholar
  10. 10.
    G. Song, A. Atrens, X. Wu, and B. Zhang, Corros. Sci. 40, 1769 (1998).CrossRefGoogle Scholar
  11. 11.
    R.K. Singh Raman, Metall. Mater. Trans. A 35, 2521 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Zhao, M. Liu, G. Song, and A. Atrens, Corros. Sci. 50, 1939 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and S. Feliú, Electrochim. Acta 53, 7890 (2008).CrossRefGoogle Scholar
  14. 14.
    L.G. Bland and J.R. Scully, Corrosion 73, 526 (2017).CrossRefGoogle Scholar
  15. 15.
    R.K. Singh Raman, N. Birbilis, and J. Efthimiadis, Corros. Eng. Sci. Technol. 39, 4 (2004).CrossRefGoogle Scholar
  16. 16.
    R.M. Asmussen, P. Jakupi, M. Danaie, G.A. Botton, and D.W. Shoesmith, Corros. Sci. 75, 114 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, and G.A. Botton, Corros. Sci. 77, 151 (2013).CrossRefGoogle Scholar
  18. 18.
    R.M. Asmussen, W.J. Binns, P. Jakupi, and D. Shoesmith, J. Electrochem. Soc. 161, C501 (2014).CrossRefGoogle Scholar
  19. 19.
    O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corros. Sci. 45, 9 (1989).Google Scholar
  20. 20.
    A.D. Südholz, N.T. Kirkland, R.G. Buchheit, and N. Birbilis, Electrochem. Solid-State Lett. 14, C5 (2011).CrossRefGoogle Scholar
  21. 21.
    L.G. Bland, N. Birbilis, and J.R. Scully, J. Electrochem. Soc. 163, C895 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, and G.A. Botton, Corros. Sci. 83, 299 (2014).CrossRefGoogle Scholar
  23. 23.
    G. Williams and H.N. McMurray, J. Electrochem. Soc. 155, C340 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Fajardo, C.F. Glover, G. Williams, and G.S. Frankel, Corrosion 73, 482 (2017).CrossRefGoogle Scholar
  25. 25.
    G. Williams, H. Dafydd, and R. Grace, Electrochim. Acta 109, 489 (2013).CrossRefGoogle Scholar
  26. 26.
    Z.P. Cano, J.R. McDermid, and J.R. Kish, J. Electrochem. Soc. 162, C732 (2015).CrossRefGoogle Scholar
  27. 27.
    Z.P. Cano, J.R. Kish, and J.R. McDermid, J. Electrochem. Soc. 163, C62 (2016).CrossRefGoogle Scholar
  28. 28.
    J.A. Esparza, W.C. Davis, and L.E. Murr, J. Mater. Sci. 38, 941 (2003).CrossRefGoogle Scholar
  29. 29.
    M. Santella, A. Frederick, C. Degen, and T.-Y. Pan, JOM 58, 56 (2006).CrossRefGoogle Scholar
  30. 30.
    P. Cavaliere and P.P. De Marco, J. Mater. Sci. 41, 3459 (2006).CrossRefGoogle Scholar
  31. 31.
    J. Robson, S. Cui, and Z. Chen, Mater. Sci. Forum 654–656, 751 (2010).CrossRefGoogle Scholar
  32. 32.
    J.H. Forsmark, M. Li, X. Su, D.A. Wagner, J. Zindel, A.A. Luo, J.F. Quinn, R. Verma, Y.M. Wang, S.D. Logan, and S. Bilkhu, Magnesium Technology 2014, ed. M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham (Cham: Springer, 2016), p. 517.Google Scholar
  33. 33.
    G. Williams and H.N. McMurray, Corrosion 62, 231 (2006).CrossRefGoogle Scholar
  34. 34.
    S. Barbagallo, H.I. Laukli, O. Lohne, and E. Cerri, J. Alloys Compd. 378, 226 (2004).CrossRefGoogle Scholar
  35. 35.
    G. Williams, H. Ap Llwyd Dafydd, R. Subramanian, and H.N. McMurray, Corrosion 73, 471 (2017).CrossRefGoogle Scholar
  36. 36.
    Z.P. Cano, M. Danaie, J.R. Kish, J.R. McDermid, G.A. Botton, and G. Williams, Corrosion 71, 146 (2015).CrossRefGoogle Scholar
  37. 37.
    J.R. Kish, G. Williams, J.R. McDermid, J.M. Thuss, and C.F. Glover, J. Electrochem. Soc. 161, C405 (2014).CrossRefGoogle Scholar
  38. 38.
    M. Taheri, M. Danaie, and J.R. Kish, J. Electrochem. Soc. 161, C89 (2014).CrossRefGoogle Scholar
  39. 39.
    J.R. Kish, Y. Hu, J. Li, W. Zheng, and J.R. McDermid, Corrosion 68, 468 (2012).CrossRefGoogle Scholar
  40. 40.
    R. Tunold, H. Holtan, M.-B. Hägg Berge, A. Lasson, and R. Steen-Hansen, Corros. Sci. 17, 353 (1977).CrossRefGoogle Scholar
  41. 41.
    R.C. Phillips and J.R. Kish, Corrosion 69, 813 (2013).CrossRefGoogle Scholar
  42. 42.
    J.W. Boclair and P.S. Braterman, Chem. Mater. 11, 298 (1999).CrossRefGoogle Scholar
  43. 43.
    J.H. Nordlien, K. Nisancioglu, S. Ono, and N. Masuko, J. Electrochem. Soc. 143, 2564 (1996).CrossRefGoogle Scholar
  44. 44.
    J.H. Nordlien, K. Nisancioglu, S. Ono, and N. Masuko, J. Electrochem. Soc. 144, 461 (1997).CrossRefGoogle Scholar
  45. 45.
    S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, and R. Arrabal, Appl. Surf. Sci. 255, 4102 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Centre for Automotive Materials and CorrosionMcMaster UniversityHamiltonCanada
  2. 2.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  3. 3.Materials Research CentreSwansea UniversitySwanseaUK

Personalised recommendations