Advertisement

JOM

, Volume 69, Issue 11, pp 2390–2396 | Cite as

Microstructure-Based Counterfeit Detection in Metal Part Manufacturing

  • Adam Dachowicz
  • Siva Chaitanya Chaduvula
  • Mikhail Atallah
  • Jitesh H. Panchal
Article

Abstract

Counterfeiting in metal part manufacturing has become a major global concern. Although significant effort has been made in detecting the implementation of such counterfeits, modern approaches suffer from high expense during production, invasiveness during manufacture, and unreliability in practice if parts are damaged during use. In this paper, a practical microstructure-based counterfeit detection methodology is proposed, which draws on inherent randomness present in the microstructure as a result of the manufacturing process. An optical Physically Unclonable Function (PUF) protocol is developed which takes a micrograph as input and outputs a compact, unique string representation of the micrograph. The uniqueness of the outputs and their robustness to moderate wear and tear is demonstrated by application of the methodology to brass samples. The protocol is shown to have good discriminatory power even between samples manufactured in the same batch, and runs on the order of several seconds per part on inexpensive machines.

Notes

Acknowledgements

Portions of this work were supported by National Science Foundation Grants CPS-1329979, CNS-0915436, CMMI-1265622; and by sponsors of CERIAS. The authors declare that they have no conflict of interest.

Supplementary material

11837_2017_2502_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (pdf 100 KB)

References

  1. 1.
    P. Tuyls, J. Guajardo, L. Batina, and T. Kerins, in Security with Noisy Data: On Pri- vate Biometrics, Secure Key Storage and Anti-Counterfeiting, ed. P. Tuyles and T. Kevenaar (London: Springer, 2007), p. 293CrossRefGoogle Scholar
  2. 2.
    R. Maes and I. Verbauwhede, in Towards Hardware-Intrinsic Security, ed. A.-R. Sadeghi and D. Naccache (Heidelberg: Springer, 2010), p. 3.CrossRefGoogle Scholar
  3. 3.
    A. Mitrokotsa and M. Rieback, Inform. Syst. Front. 12, 491 (2010) doi: 10.1007/s10796-009-9210-z.CrossRefGoogle Scholar
  4. 4.
    J. Buchanan, R.P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D.A. Allwood, and M.T. Bryan, Nature, 436, 475 (2005) doi: 10.1038/436475a.CrossRefGoogle Scholar
  5. 5.
    G.E. Suh and S. Devadas, Des. Aut. Con. 44, 9 (2007) doi: 10.1145/1278480.1278484.Google Scholar
  6. 6.
    R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science, 297, 2026 (2002) doi: 10.1126/science.1074376.CrossRefGoogle Scholar
  7. 7.
    P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven, N, Verhaegh, and B. Wolters, Lect. Notes Comput. Sci. 369 (2006) doi: 10.1007/11894063_29
  8. 8.
    A.-R. Sadeghi, I. Visconti, and C. Wachsmann, in Towards Hardware-Intrinsic Security, ed. A.-R. Sadeghi and D. Naccache (Heidelberg: Springer, 2010), p. 281.CrossRefGoogle Scholar
  9. 9.
    P. Tuyls and B. Škorić, in AmIware Hardware Technology Drivers of Ambient Intelligence, ed. S. Mukherjee, E. Aarts, R. Roovers, and F. Widdershoven (Dordrecht: Springer, 2006), p. 421.CrossRefGoogle Scholar
  10. 10.
    M. Diephuis, S. Voloshynovskiy, T. Holotyak, N. Stendardo, and B. Keel, in Proceedings of SPIE 90280T (2014) doi: 10.1117/12.2039638
  11. 11.
    J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45, 4 (2013) doi: 10.1016/j.cad.2012.06.006.CrossRefGoogle Scholar
  12. 12.
    B.L. Adams, S. Kalidindi, and D.T. Fullwood, in Microstructure Sensitive Design for Performance Optimization (Boston, MA: ButterWorth-Heinemann, 2013), p. 67.Google Scholar
  13. 13.
    S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 59, 6387 (2011) doi: 10.1016/j.actamat.2011.06.051.CrossRefGoogle Scholar
  14. 14.
    W.-H. Tsai, Comput. Gr. Image Process. 29, 377 (1985) doi: 10.1016/0734-189X(85)90133-1.CrossRefGoogle Scholar
  15. 15.
    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods, 9, 676 (2012) doi: 10.1038/nmeth.2019.CrossRefGoogle Scholar
  16. 16.
    S. Ghosh and D.M. Dimiduk, Computational Methods for Microstructure-Property Relationships, (New York, NY: Springer, 2011), pp. 99–150.CrossRefGoogle Scholar
  17. 17.
    R.T. DeHoff and F.N. Rhines, Quantitative Microscopy, (New York, NY: Mcgraw-Hill, 1968), p. 128.Google Scholar
  18. 18.
    S.I. Tomkeieff, Nature, 155, 107 (1945) doi: 10.1038/155024a0.Google Scholar
  19. 19.
    R.W. Hamming, Bell Sys. Tech. J. 29, 147 (1950) doi: 10.1002/j.1538-7305.1950.tb00463.x.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations