Skip to main content
Log in

Evolution of Texture and Mechanical Properties of Pure Mg Processed by ECAP at Room Temperature

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Equal channel angular pressing (ECAP) was performed on extruded pure Mg, which was clad with a drilled pure Fe coat through an ECAP die to produce a pure Mg sample without obvious cracks at room temperature. After one-pass ECAP, the grain size decreased because of basal slip activation during the dynamic plastic deformation but the microstructure became inhomogeneous. The deformed texture was less scattered and inclined by ~20° from the normal direction toward the extruded direction, and low angle boundaries increased continuously. The mechanical properties decreased slightly as a result of the combined effect from a more refined microstructure and a weaker texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Kamado and Y. Kojima, Mater. Sci. Forum 546–549, 55 (2007).

    Article  Google Scholar 

  2. D. Brungs, Mater. Des. 18, 285 (1997).

    Article  Google Scholar 

  3. R.W.K. Honeycombe, The Plastic Deformation of Metals (London: Edward Arnold, 1968), p. 20.

    Google Scholar 

  4. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  5. A. Muralidhar, S. Narendranath, and H. Shivananda Nayaka, J. Mag. Alloys 1, 336 (2013).

  6. M.Z. Bian, Y.L. Li, M. Mathesh, D. Abreu, and N.D. Nam, J. Alloys Compd. 578, 369 (2013).

    Article  Google Scholar 

  7. R. Kaibyshev, A. Galiev, Y. Huang, R.B. Figueiredoand, and O. Sitdikov, Nanostructured Mater. 6, 621 (1995).

    Article  Google Scholar 

  8. Y. Huang, R.B. Figueiredo, and T. Baudin, Adv. Eng. Mater. 14, 1018 (2012).

    Article  Google Scholar 

  9. R. Wadsack, R. Pippan, and B. Schedler, Fusion Eng. Des. 66–68, 265 (2003).

    Article  Google Scholar 

  10. G. Sakai, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 393, 344 (2005).

    Article  Google Scholar 

  11. S.V. Dobatkin, E.N. Bastarache, and G. Sakai, Mater. Sci. Eng. A 408, 141 (2005).

    Article  Google Scholar 

  12. R.Z. Valiev, Y. Estrin, and Z. Horita, JOM 58, 33 (2006).

    Article  Google Scholar 

  13. Q. Guo, H.G. Yan, and Z.H. Chen, Mater. Charact. 2, 162 (2007).

    Article  Google Scholar 

  14. A. Bhowmik, S. Biswas, and S.S. Dhinwal, Mater. Sci. Forum 702–703, 774 (2012).

    Google Scholar 

  15. R.Z. Valiev, Nature 419, 887 (2002).

    Article  Google Scholar 

  16. F.S.J. Poggiali, R.B. Figueiredo, M.T.P. Aguilar, and P.R. Cetlin J. Mater. Res. Technol. 2, 30 (2013).

    Article  Google Scholar 

  17. C.Y. Lin, H.Y. Bor, C.G. Chao, and T.F. Liu, J. Alloys Compd. 578, 26 (2013).

    Article  Google Scholar 

  18. K.E. Jeong, B.C. Hee, S.M. Hong, K. Taek-Soo, and K.H. Seop, Mater. Trans. 49, 1006 (2008).

    Article  Google Scholar 

  19. B. Beausir, S. Suwas, L. Tóth, K.W. Neale, and J.J. Fundenberger, Acta Mater. 56, 200 (2008).

    Article  Google Scholar 

  20. S.X. Ding, W.T. Lee, and C.P. Chang, Scr. Mater. 59, 1006 (2008).

    Article  Google Scholar 

  21. K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan, Mater. Sci. Eng. A 410, 324 (2005).

    Article  Google Scholar 

  22. S. Biswas, S.S. Dhinwal, and S. Suwas, Acta Mater. 58, 3247 (2010).

    Article  Google Scholar 

  23. H. Kitahara, F. Maruno, M. Tsushida, and S. Ando, Mater. Sci. Eng. A 590, 274 (2014).

    Article  Google Scholar 

  24. X. Yang, H. Miura, and T. Sakai, Mater. Trans. 46, 2981 (2005).

    Article  Google Scholar 

  25. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Acta Mater. 51, 3293 (2003).

    Article  Google Scholar 

  26. M. Mabuchi, Y. Chino, and H. Iwasaki, Metall. Mater. Trans. 42, 1182 (2001).

    Google Scholar 

  27. J.Z. Li, W. Xu, X.L. Wu, H. Ding, and K. Xia, Mater. Sci. Eng. A 528, 5993 (2011).

    Article  Google Scholar 

  28. W.J. Kim and H.G. Jeong, Mater. Sci. Forum 419–422, 201 (2003).

    Article  Google Scholar 

  29. T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, and Y.B. Xu, Mater. Sci. Eng. A 360, 345 (2003).

    Article  Google Scholar 

  30. V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was completely supported by the National Natural Science Foundation of China (No. 51474152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Liang, W., Wang, H. et al. Evolution of Texture and Mechanical Properties of Pure Mg Processed by ECAP at Room Temperature. JOM 69, 2297–2301 (2017). https://doi.org/10.1007/s11837-017-2497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2497-1

Navigation