Skip to main content
Log in

Influence of Reinforcement Parameters and Ageing Time on Mechanical Behavior of Novel Al2024/SiC/Red Mud Composites Using Response Surface Methodology

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study investigates the mechanical behavior of aluminum 2024 matrix composites reinforced with silicon carbide and red mud particles. The hybrid reinforcements were successfully incorporated into the alloy matrix using the stir casting process. An orthogonal array based on Taguchi’s technique was used to acquire experimental data for mechanical properties (hardness and impact energy) of the composites. The analysis of variance (ANOVA) and response surface methodology (RSM) techniques were used to evaluate the influence of test parameters (reinforcement ratio, particle size and ageing time). The morphological analysis of the surfaces (fractured during impact tests) was conducted to identify the failure mechanism. Finally, a confirmation experiment was performed to check the adequacy of the developed model. The results indicate that the ageing time is the most effective parameter as far as the hardness of the hybrid composites is concerned. It has also been revealed that red mud wt.% has maximum influence on the impact energy characteristics of the hybrid composites. The study concludes that Al2024/SiC/red mud hybrid composites possess superior mechanical performance in comparison to pure alloy under optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.M. Kevorkijan, JOM 51, 54 (1999).

    Article  Google Scholar 

  2. C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, J. Alloys Compd. 585, 362 (2014).

    Article  Google Scholar 

  3. K. Umanath, K. Palanikumar, and S.T. Selvamani, Compos. Part B: Eng. 53, 159 (2013).

    Article  Google Scholar 

  4. M.K. Surappa, Sadhana 28, 319 (2003).

    Article  Google Scholar 

  5. M. Kok, J. Mater. Process. Technol. 161, 1381 (2005).

    Article  Google Scholar 

  6. N. Chawla and Y.L. Shen, Adv. Mater. Process. 3, 357 (2001).

    Google Scholar 

  7. C. Sun, M. Song, Z. Wang, and Y. He, J. Mater. Eng. Perf. 20, 1606 (2011).

    Article  Google Scholar 

  8. A. Rabiri, L. Vendra, and T. Kishi, Compos. A: Appl. Sci. Manuf. 39, 294 (2008).

    Article  Google Scholar 

  9. K. Praveen Kumar, M. Gopi Krishna, J. Babu Rao, and N.R.M.R. Bhargava, J. Alloys Compd. 640, 421 (2015).

    Article  Google Scholar 

  10. Y. Sahin, Mater. Des. 24, 671 (2003).

    Article  Google Scholar 

  11. R.N. Rao and S. Das, Mater. Des. 32, 1066 (2011).

    Article  Google Scholar 

  12. J. Singh and A. Chauhan, Int. J. Appl. Eng. Res. 9, 959 (2014).

    Google Scholar 

  13. J. Singh and A. Chauhan, Tribol. Online 9, 121–134 (2014).

    Article  Google Scholar 

  14. J. Singh and A. Chauhan, J. Mater. Res. Technol. 5, 159 (2015).

    Article  Google Scholar 

  15. J. Singh and A. Chauhan, Ceram. Int. 42A, 56 (2016).

    Article  Google Scholar 

  16. J. Singh, Friction 4, 191 (2016).

    Article  Google Scholar 

  17. R. Kumar and S. Dhiman, Mater. Des. 50, 351 (2013).

    Article  Google Scholar 

  18. A. Baradeswaran and A.E. Perumal, Compos. B: Eng. 56, 464 (2014).

    Article  Google Scholar 

  19. N.V. Rengasamy, M. Rajkumar, and S.S. Kumaran, J. Alloys Compd. 662, 325 (2016).

    Article  Google Scholar 

  20. J. Hahsins, I. Loonay, and M.S.J. Hashni, J. Mater. Process. Technol. 92, 1 (1999).

    Google Scholar 

  21. S. Naher, D. Babazon, and L. Loonay, J. Mater. Process. Technol. 30, 76 (2003).

    Google Scholar 

  22. N. Altinkok, JOM 66, 909 (2014).

    Article  Google Scholar 

  23. S. Mahdavi and F. Akhlaghi, J. Mater. Sci. 46, 1502 (2011).

    Article  Google Scholar 

  24. T. Rajmohan, K. Palanikumar, and S. Ranganathan, Trans. Nonferr. Met. Soc. China 23, 2509 (2013).

    Article  Google Scholar 

  25. D.S. Prasad, C. Shoba, and N. Ramanaiah, J. Mater. Resear. Technol. 3, 79 (2014).

    Article  Google Scholar 

  26. B. Rahimi, H. Khosravi and Haddad-Sabzevar, Int. J. Miner. Metall. Mater. (2015). doi:10.1007/s12613-015-1044-8.

  27. A.L. Chen, Y. Arai, and E. Tsuchida, Compos. B: Eng. 36, 319 (2005).

    Article  Google Scholar 

  28. I. Ozdemir and K. Onel, Compos B: Eng 35, 379 (2004).

    Article  Google Scholar 

  29. A. Akinci and R. Artir, Mater. Charact. 59, 417 (2008).

    Article  Google Scholar 

  30. S. Xue, F. Zhu, X. Kong, C. Wu, Z. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Resr. 23, 1120 (2016).

    Article  Google Scholar 

  31. P.J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd ed. (New York: Mcgraw-Hill, 1996).

    Google Scholar 

  32. M.S. Phadke, Quality engineering using robust design (Englewood Cliffs, NJ: Prentice-Hall, 1989).

    Google Scholar 

  33. K.K. Alaneme, I.B. Akintunde, P.A. Olubambi, and T.M. Adewale, J. Mater. Res. Technol. 2, 60 (2013).

    Article  Google Scholar 

  34. S. Suresha and B.K. Sridhara, Mater. Des. 34, 573 (2012).

    Article  Google Scholar 

  35. Y.W. Yan, L. Geng, and A.B. Li, Mater. Sci. Eng. A 448, 315 (2007).

    Article  Google Scholar 

  36. P.M. Singh and J.J. Lewandowski, Metall. Trans. A 24, 2531 (1993).

    Article  Google Scholar 

  37. J. Lin, P. Li, and R. Wu, Scr. Metall. 28, 281 (1993).

    Article  Google Scholar 

  38. N.E. Bekheet, R.M. Gadelrab, M.F. Salah, and A.N. Abd El-Azim, Mater. Des. 23, 153 (2002).

    Article  Google Scholar 

  39. M.T. Milan, P. Bowen, and J. Mater, Eng. Perf. 13, 775 (2004).

    Article  Google Scholar 

  40. D. Sanjeev, S. Das, and K. Das, J. Mater. Sci. 41, 5402 (2006).

    Article  Google Scholar 

  41. M.M. Ranjbaran, Eur. J. Appl. Sci. Res. 41, 261 (2010).

    Google Scholar 

  42. I. Balasubramaniam and R. Maheswaran, Mater. Des. 65, 511 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. But, we wish to thank Mr. Inderjit Singh, Lab Asst., Mesoscopic Imaging and Fabrication Facility, Indian Institute of Science and Research (IISAR), Mohali, Punjab, India, 16006 for help in carrying out microscopic examination of composites (SEM and EDS analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaswinder Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Chauhan, A. Influence of Reinforcement Parameters and Ageing Time on Mechanical Behavior of Novel Al2024/SiC/Red Mud Composites Using Response Surface Methodology. JOM 69, 2471–2479 (2017). https://doi.org/10.1007/s11837-017-2479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2479-3

Navigation