Advertisement

JOM

, Volume 69, Issue 11, pp 2092–2098 | Cite as

Design of High-Entropy Alloy: A Perspective from Nonideal Mixing

  • Q. F. He
  • Z. Y. Ding
  • Y. F. Ye
  • Y. Yang
Article

Abstract

Since the advent in 2004, high-entropy alloys (HEAs) have been attracting a great deal of research interest worldwide. Being deemed as a major paradigmatic shift, the design of HEAs without base elements poses challenges to the existing thermodynamic models and theories that were long established for traditional alloys, one of which is related to the thermodynamic mechanisms for the formation of random solid solution in a concentrated multicomponent alloy. In this article, we discuss the design of HEAs from the perspective of correlated mixing (nonideal mixing of atoms with interatomic correlations). In a quantitative manner, we can show that the formation of a random solid solution in HEAs depends not only on the number of constituent elements but also on the alloy’s melting/processing temperature and on various interatomic correlations. Through the correlated mixing rule, we further demonstrate a strategy to screen out equiatomic alloys with the thermodynamic characteristics close to those of random solid solutions from an expanded library of 20 candidate elements.

Notes

Acknowledgements

Y.Y. acknowledges the financial support provided by the City University of Hong Kong to this research through Grants 9610366 and 7004597.

References

  1. 1.
    R.E. Hummel, Understanding Materials Science: History, Properties, Applications (New York: Springer Science & Business Media, 2004).Google Scholar
  2. 2.
    J.R. Davis, Stainless Steels (Materials Park: ASM International, 1994).Google Scholar
  3. 3.
    I.J. Polmear, Light Alloys (Oxford: Butterworth-Heinemann, 2005), p. 97.CrossRefGoogle Scholar
  4. 4.
    I.J. Polmear, Light Alloys (Oxford: Butterworth-Heinemann, 2005), p. 205.CrossRefGoogle Scholar
  5. 5.
    I.J. Polmear, Light Alloys (Oxford: Butterworth-Heinemann, 2005), p. 237.CrossRefGoogle Scholar
  6. 6.
    I.J. Polmear, Light Alloys (Oxford: Butterworth-Heinemann, 2005), p. 299.CrossRefGoogle Scholar
  7. 7.
    R.C. Reed, The Superalloys: Fundamentals and Applications (New York: Cambridge University Press, 2008).Google Scholar
  8. 8.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, Metall. Trans. A 20, 2149 (1989).CrossRefGoogle Scholar
  9. 9.
    A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
  10. 10.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).CrossRefGoogle Scholar
  11. 11.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  12. 12.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  13. 13.
    E.J. Pickering and N.G. Jones, Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
  14. 14.
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
  15. 15.
    J.-W. Yeh, JOM 65, 1759 (2013).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    M.C. Gao, High-Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, Y. Jien-Wei, P.K. Liaw, and Z. Yong (New York: Springer International Publishing, 2016), p. 369.CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, S. Guo, C.T. Liu, and X. Yang, High-Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, Y. Jien-Wei, P.K. Liaw, and Z. Yong (New York: Springer International Publishing, 2016), p. 21.CrossRefGoogle Scholar
  19. 19.
    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Nat. Commun. 6, 5964 (2015).CrossRefGoogle Scholar
  20. 20.
    M.C. Gao, JOM 67, 2251 (2015).CrossRefGoogle Scholar
  21. 21.
    D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
  22. 22.
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, Scripta Mater. 104, 53 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Praveen, B.S. Murty, and R.S. Kottada, Mater. Sci. Eng. A 534, 83 (2012).CrossRefGoogle Scholar
  24. 24.
    F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
  25. 25.
    A.K. Singh and A. Subramaniam, J. Alloys Compd. 587, 113 (2014).CrossRefGoogle Scholar
  26. 26.
    N.G. Jones, J.W. Aveson, A. Bhowmik, B.D. Conduit, and H.J. Stone, Intermetallics 54, 148 (2014).CrossRefGoogle Scholar
  27. 27.
    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).CrossRefGoogle Scholar
  28. 28.
    M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Phys. Rev. X 5, 011041 (2015).Google Scholar
  29. 29.
    Z. Liu, Y. Lei, C. Gray, and G. Wang, JOM 67, 2364 (2015).CrossRefGoogle Scholar
  30. 30.
    G. Anand, R. Goodall, and C.L. Freeman, Scripta Mater. 124, 90 (2016).CrossRefGoogle Scholar
  31. 31.
    Q.F. He, Y.F. Ye, and Y. Yang, J. Appl. Phys. 120, 154902 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Guo and C.T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).CrossRefGoogle Scholar
  34. 34.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropy 15, 3810 (2013).MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Widom, High-Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, Y. Jien-Wei, P.K. Liaw, and Z. Yong (New York: Springer International Publishing, 2016), p. 267.CrossRefGoogle Scholar
  36. 36.
    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227 (2016).CrossRefGoogle Scholar
  37. 37.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  38. 38.
    Y.F. Ye, C.T. Liu, and Y. Yang, Acta Mater. 94, 152 (2015).CrossRefGoogle Scholar
  39. 39.
    J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
  40. 40.
    C. Varvenne, A. Luque, and W.A. Curtin, Acta Mater. 118, 164 (2016).CrossRefGoogle Scholar
  41. 41.
    S. Guo, Mater. Sci. Technol. 31, 1223 (2015).CrossRefGoogle Scholar
  42. 42.
    Z. Wang, S. Guo, and C.T. Liu, JOM 66, 1966 (2014).CrossRefGoogle Scholar
  43. 43.
    D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Acta Mater. 98, 288 (2015).CrossRefGoogle Scholar
  44. 44.
    U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (Boca Raton: CRC Press, 2016).Google Scholar
  45. 45.
    J.W. Yeh, JOM 67, 2254 (2015).CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  47. 47.
    S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
  48. 48.
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, Intermetallics 59, 75 (2015).CrossRefGoogle Scholar
  49. 49.
    X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
  50. 50.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  51. 51.
    F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Acta Mater. 112, 40 (2016).CrossRefGoogle Scholar
  52. 52.
    Y.F. Ye, Q. Wang, Y.L. Zhao, Q.F. He, J. Lu, and Y. Yang, J. Alloys Compd. 681, 167 (2016).CrossRefGoogle Scholar
  53. 53.
    H. Bakker and A. Miedema, Enthalpies in Alloys: Miedemas Semi-Empirical Model (Uetikon-Zuerich: Trans Tech Publications, 1998).CrossRefGoogle Scholar
  54. 54.
    F.R. Boer, Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland, 1988).Google Scholar
  55. 55.
    M. Gao and D. Alman, Entropy 15, 4504 (2013).CrossRefGoogle Scholar
  56. 56.
    Q.F. He, Y.F. Ye, and Y. Yang, J. Phase Equilib. Diffus. (2017). doi: 10.1007/s11669-017-0560-9.Google Scholar
  57. 57.
    Y.F. Ye, X.D. Liu, S. Wang, C.T. Liu, and Y. Yang, Intermetallics 78, 30 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Centre for Advanced Structural Materials, Department of Mechanical and Biomedical EngineeringCity University of Hong KongKowloon Tong, KowloonPeople’s Republic of China

Personalised recommendations