, Volume 69, Issue 11, pp 2328–2334 | Cite as

Role of Static and Cyclic Deformation on the Corrosion Behavior of a Magnesium-Steel Structural Joint

  • B. Gholami Bazehhour
  • I. Adlakha
  • K. N. Solanki


In this article, a numerical investigation examining the influence of various mechanical loading scenarios on the corrosion behavior of a galvanic joint formed between a magnesium alloy and mild steel was carried out. A wide spectrum of mechanical conditions were examined to facilitate the development of a comprehensive understanding on the effect of mechanical deformation during galvanic corrosion. In general, we found that the onset of nonlinear deformation drastically accelerates the localized corrosion. Furthermore, subjecting the galvanic joint to alternating corrosion and fatigue loading was found to increase the observed localized corrosion drastically. Finally, the simulation results are discussed with respect to the identification and description of the detrimental physical phenomena that undermine the structural integrity of joints subjected to various mechanical loading scenarios.



The authors gratefully acknowledge support from the Office of Naval Research under Contract N000141110793.

Supplementary material

11837_2017_2433_MOESM1_ESM.docx (109 kb)
Supplementary material 1 (DOCX 108 kb)


  1. 1.
    H. Friedrich and S. Schumann, J. Mater. Process. Technol. 117, 276 (2001).CrossRefGoogle Scholar
  2. 2.
    A.A. Luo, Mater. Sci. Forum 419, 57 (2003).CrossRefGoogle Scholar
  3. 3.
    M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2007).CrossRefGoogle Scholar
  4. 4.
    K.N. Solanki, J.B. Jordon, W. Whittington, H. Rao, and C.R. Hubbard, Scripta Mater. 66, 797 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Lugo, J.B. Jordon, K.N. Solanki, L.G. Hector Jr., J.D. Bernard, A.A. Luo, and M.F. Horstemeyer, Int. J. Fatigue 52, 131 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Atrens, G.-L. Song, F. Cao, Z. Shi, and P.K. Bowen, J. Magnes. Alloys 1, 177 (2013).CrossRefGoogle Scholar
  7. 7.
    R.A. Carneiro, R.C. Ratnapuli, and V. de Freitas Cunha Lins, Mater. Sci. Eng., A 357, 104 (2003).CrossRefGoogle Scholar
  8. 8.
    B. Gu, J. Luo, and X. Mao, Corrosion 55, 96 (1999).CrossRefGoogle Scholar
  9. 9.
    J. Woodtli and R. Kieselbach, Eng. Fail. Anal. 7, 427 (2000).CrossRefGoogle Scholar
  10. 10.
    R.N. Parkins, A review of stress corrosion cracking of high pressure gas pipelines, CORROSION 2000 (NACE International, 2000).Google Scholar
  11. 11.
    K.B. Deshpande, Corros. Sci. 52, 3514 (2010).CrossRefGoogle Scholar
  12. 12.
    K.B. Deshpande, Corros. Sci. 52, 2819 (2010).CrossRefGoogle Scholar
  13. 13.
    S.R. Cross, S. Gollapudi, and C.A. Schuh, Corros. Sci. 88, 226 (2014).CrossRefGoogle Scholar
  14. 14.
    N. Kota, S.M. Qidwai, A.C. Lewis, and V.G. DeGiorgi, ECS Trans. 50, 155 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Xiao and S. Chaudhuri, Electrochim. Acta 56, 5630 (2011).CrossRefGoogle Scholar
  16. 16.
    J.X. Jia, G. Song, and A. Atrens, Corros. Sci. 48, 2133 (2006).CrossRefGoogle Scholar
  17. 17.
    J.X. Jia, G. Song, and A. Atrens, Adv. Eng. Mater. 9, 65 (2007).CrossRefGoogle Scholar
  18. 18.
    D. di Caprio, J. Stafiej, G. Luciano, and L. Arurault, Corros. Sci. 112, 438 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Wang and E.-H. Han, Int. J. Electrochem. Sci. 10, 815 (2015).Google Scholar
  20. 20.
    H. Wang and E.-H. Han, Corros. Sci. 103, 305 (2016).CrossRefGoogle Scholar
  21. 21.
    Z. Chen and F. Bobaru, J. Mech. Phys. Solids 78, 352 (2015).MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Tafel, Z. Phys. Chem. 50, 641 (1905).Google Scholar
  23. 23.
    E.M. Gutman, Mechanochemistry of Solid Surfaces (River Edge, NJ: World Scientific Pub Co Inc, 1994).CrossRefGoogle Scholar
  24. 24.
    T. Shintani, Y. Murata, Y. Terada, and M. Morinaga, Metall. Mater. Trans. 51, 1067 (2010).Google Scholar
  25. 25.
    P. Klimanek and A. Pötzsch, Mater. Sci. Eng., A 324, 145 (2002).CrossRefGoogle Scholar
  26. 26.
    G.K. Williamson and R.E. Smallman, Philos. Magnes. 1, 34 (1956).CrossRefGoogle Scholar
  27. 27.
    J.C. Simo and T.J.R. Hughes, Computational Inelasticity (New York, NY: Springer Science & Business Media, 2006).MATHGoogle Scholar
  28. 28.
    E. Kelley and W. Hosford, Trans. Metall. Soc. AIME 242, 5 (1968).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA

Personalised recommendations