Advertisement

JOM

, Volume 68, Issue 3, pp 850–859 | Cite as

Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

  • Jason R. Trelewicz
  • Gary P. Halada
  • Olivia K. Donaldson
  • Guha Manogharan
Article

Abstract

Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing–structure–properties–performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

Notes

Acknowledgements

The authors would like to acknowledge support from the National Center for Defense Manufacturing and Machining (NCDMM)/America Makes and the SUNY Network of Excellence for Materials and Advanced Manufacturing. J.T. and O.D. acknowledge support for this work from the National Science Foundation under Award No. CMMI-1401662. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. J.T and O.D would also like to thank Kim Kisslinger at the CFN for his assistance in preparing the FIB TEM samples.

References

  1. 1.
    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
  2. 2.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
  3. 3.
    G.N. Levy, R. Schindel, and J.P. Kruth, CIRP Ann. 52, 589 (2003).CrossRefGoogle Scholar
  4. 4.
    D.T. Pham and R.S. Gault, Int. J. Mach. Tools Manuf. 38, 1257 (1998).CrossRefGoogle Scholar
  5. 5.
    J. Pegna, Autom. Constr. 5, 427 (1997).CrossRefGoogle Scholar
  6. 6.
    J.P. Kruth, M.C. Leu, and T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping (Bern: Hallwag Publishers, 1998).Google Scholar
  7. 7.
    C.B. Williams, F. Mistree, and D.W. Rosen, J. Mech. Des. 133, 11 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, Acta Mater. 58, 3303 (2010).CrossRefGoogle Scholar
  9. 9.
    E. Yasa and J.P. Kruth, Proc. Eng. 19, 389 (2011).CrossRefGoogle Scholar
  10. 10.
    W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, Int. J. Adv. Manuf. Technol. 58, 1189 (2012).CrossRefGoogle Scholar
  11. 11.
    S.D. Washko and G. Aggen, ASM Handbook: Wrought Stainless Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys (Ohio: ASM International, 1990).Google Scholar
  12. 12.
    H. Hermawan, D. Ramdan, and J.R. Djuansjah, Metals for Biomedical Applications (INTECH Open Access Publisher, 2011).Google Scholar
  13. 13.
    J.C. Wataha, N.L. O’Dell, B.B. Singh, M. Ghazi, G.M. Whitford, and P.E. Lockwood, J. Biomed. Mater. Res. 58, 537 (2001).CrossRefGoogle Scholar
  14. 14.
    C.R. Clayton, G.P. Halada, and J.R. Kearns, Mater. Sci. Eng. A 198, 135 (1995).CrossRefGoogle Scholar
  15. 15.
    G.P. Halada and C.R. Clayton, J. Vac. Sci. Technol. A 11, 2342 (1993).CrossRefGoogle Scholar
  16. 16.
    A. Di Schino and J.M. Kenny, J. Mater. Sci. Lett. 21, 1631 (2002).CrossRefGoogle Scholar
  17. 17.
    Y. Li, F. Wang, and G. Liu, Corrosion 60, 891 (2004).CrossRefGoogle Scholar
  18. 18.
    Y.-W. Hao, B. Deng, C. Zhong, Y.-M. Jiang, and J. Li, J. Iron. Steel Res. Int. 16, 68 (2009).CrossRefGoogle Scholar
  19. 19.
    A.J. Detor and C.A. Schuh, J. Mater. Res. 22, 15 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Edington, Practical Electron Microscopy in Materials Science (New York: Van Nostrand Reinhold Company, 1976).Google Scholar
  21. 21.
    T. Ungár, Scr. Mater. 51, 777 (2004).CrossRefGoogle Scholar
  22. 22.
    M. Kerber, M. Zehetbauer, E. Schafler, F. Spieckermann, S. Bernstorff, and T. Ungar, JOM 63, 61 (2011).CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 6 (2003).Google Scholar
  24. 24.
    Y.S. Hedberg, B. Qian, Z. Shen, S. Virtanen, and I. Odnevall Wallinder, Dent. Mater. 30, 525 (2014).CrossRefGoogle Scholar
  25. 25.
    X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, and Z. Shen, J. Alloys Compd. 631, 153 (2015).CrossRefGoogle Scholar
  26. 26.
    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, J. Mater. Process. Technol. 149, 616 (2004).CrossRefGoogle Scholar
  27. 27.
    J.P. Kruth, M.C. Leu, and T. Nakagawa, CIRP Ann. 47, 525 (1998).CrossRefGoogle Scholar
  28. 28.
    M. Marya, V. Singh, S. Marya, and J. Hascoet, Metall. Mater. Trans. B 46, 1654 (2015).CrossRefGoogle Scholar
  29. 29.
    C.T. Kwok, S.L. Fong, F.T. Cheng, and H.C. Man, J. Mater. Process. Technol. 176, 168 (2006).CrossRefGoogle Scholar
  30. 30.
    C. Carboni, P. Peyre, G. Béranger, and C. Lemaitre, J. Mater. Sci. 37, 3715 (2002).CrossRefGoogle Scholar
  31. 31.
    C. Kamath, B. El-dasher, G. Gallegos, W. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).CrossRefGoogle Scholar
  32. 32.
    N. Ahmed, M.S. Bakare, D.G. McCartney, and K.T. Voisey, Surf. Coat. Technol. 204, 2294 (2010).CrossRefGoogle Scholar
  33. 33.
    E. Otero, A. Pardo, M.V. Utrilla, E. Saenz, and F.J. Perez, Mater. Charact. 35, 145 (1995).CrossRefGoogle Scholar
  34. 34.
    Z. Wang, Y. Cong, T. Zhang, Y. Shao, and G. Meng, Int. J. Electrochem. Sci. 6, 5521 (2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Department of Mechanical and Industrial EngineeringYoungstown State UniversityYoungstownUSA

Personalised recommendations