Skip to main content
Log in

Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength–in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Haynes, Powder Metall. 13, 465 (1970).

    Article  Google Scholar 

  2. B. Zhang, D.R. Poirier, and W. Chen, Metall. Mater. Trans. A 30, 2659 (1999).

    Article  Google Scholar 

  3. Q.G. Wang, D. Apelian, and D.A. Lados, J. Light Metals 1, 73 (2001).

    Article  Google Scholar 

  4. C. Lin, C. Ju, and J.H. Lin, Biomaterials 26, 2899 (2005).

    Article  Google Scholar 

  5. F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, and K.S. Ravi Chandran, Mater. Sci. Eng. A 630, 139 (2015).

    Article  Google Scholar 

  6. O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, and Bondareva, Powder Metall. Met. Ceram. 41, 382 (2002).

    Article  Google Scholar 

  7. Z.Z. Fang, P. Sun, and H. Wang, Adv. Eng. Mater. 14, 383 (2012).

    Article  Google Scholar 

  8. G. Wirth, K.J. Grundhoff, and W. Smarsly, SAMPE Q. 17, 34 (1986).

    Google Scholar 

  9. Y.T. Lee, K.J. Grundhoff, and G. Wirth, Zeitschrift für Metallkunde 78, 49 (1987).

    Google Scholar 

  10. H. Wang and Z. Zak, Fang, and P. Sun. Int. J Powder Metall. 46, 45 (2010).

    Google Scholar 

  11. D. Eylon, R.G. Vogt, and F.H. Froes, Modern Dev. Powder Metall. 16, 563 (1985).

    Google Scholar 

  12. K.S. Ravi Chandran, Department of Metallurgical Engineering, The University of Utah, Salt Lake City, UT, Unpublished research, 2015.

  13. T. Fujita, A. Ogawa, C. Ouchi, and H. Tahima, Mater. Sci. Eng. A 213, 148 (1996).

    Article  Google Scholar 

  14. P.J. Anderson, V.M. Svoyatytsky, F.H. Froes, Y. Mahajan, and D. Eylon, Modern Dev. Powder Metall. 13, 537 (1981).

    Google Scholar 

  15. F.H. Froes, D. Eylon, and Y. Mahajan, Modern Dev. Powder Metall. 13, 523 (1981).

    Google Scholar 

  16. M. Hagiwara, Y. Kaieda, and Y. Kawabe, Paper presented at the 114th ISIJ Meeting, Tetsu-to-Hagane, 71, S1518 (1987) (in Japanese)

  17. Y. Yan, G.L. Nash, and P. Nash, Int. J. Fatigue 55, 81 (2013).

    Article  Google Scholar 

  18. F. Cao, K.S. Ravi Chandran, P. Kumar, P. Sun, M. Koopman, Z.Zak Fang, Department of Metallurgical Engineering, the University of Utah, Salt Lake City, UT, unpublished research, 2015.

  19. J.P. Herteman, D. Eylon, and F.H. Froes, Proceeding of the Fifth International Conference on Titanium (Munich, Germany, 10–14 September 1984).

  20. M. Hagiwara, Y. Kaieda, Y. Kawabe, and S. Miura, ISIJ Int. 31, 922 (1991).

    Article  Google Scholar 

  21. V.S. Moxson, P. Sjoblom, and M.J. Trzcinski, Adv. Powder Metall. 6, 125 (1992).

    Google Scholar 

  22. W.R. Kerr, Metall. Mater. Trans. A 16, 1077 (1985).

    Article  Google Scholar 

  23. R. Chait and T.S. Desisto, Metall. Mater. Trans. A 8, 1017 (1977).

    Article  Google Scholar 

  24. K.S. Chan, Int. J. Fatigue 32, 1428 (2010).

    Article  Google Scholar 

  25. X. Liu, C. Sun, and Y. Hong, Mater. Sci. Eng. A 622, 228 (2015).

    Article  Google Scholar 

  26. I. Weiss, D. Eylon, M.W. Toaz, and F.H. Froes, Metall. Trans. A 17, 549 (1986).

    Article  Google Scholar 

  27. S.T. Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd, and P.B. Prangnell, Mater. Charact. 102, 47 (2015).

    Article  Google Scholar 

  28. G. Kasperovich and J. Hausmann, J. Mater. Proc. Tech. 220, 202 (2015).

    Article  Google Scholar 

  29. Q. Liu, J. Elambasseril, S. Sun, M. Leary, M. Brandt, and P.K. Sharp, Adv. Mater. Res. 891–892, 1519 (2014).

    Article  Google Scholar 

  30. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).

    Article  Google Scholar 

  31. A. Mohammadhosseini, D. Fraser, S.H. Masood, and M. Jahedi, Mater. Res. Innov. 17, 106 (2013).

    Article  Google Scholar 

  32. B. Baufeld, E. Brandl, and O. Biest, J. Mater. Proc. Tech. 211, 1146 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the US Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ravi Chandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F., Ravi Chandran, K.S. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength. JOM 68, 735–746 (2016). https://doi.org/10.1007/s11837-016-1821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1821-5

Navigation