Skip to main content
Log in

A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at −18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Akhtar, C.S. Wright, and M. Youseffi, University of Bradford, Bradford, UK, C. Hauser, T.H.C. Childs, C.M. Taylor, and M. Baddrossamay, University of Leeds, Leeds, West Yorshire, J. Xie, P. Fox, and W. O’Neill, University of Liverpool, UK, UK Solid Freeform Fabrication Proceedings, 656 (2003).

  2. S. Akhtar, C.S. Wright, and M. Youseffi, University of Bradford, Bradford, UK, UK Solid Freeform Fabrication Proceedings, 141 (2004).

  3. H.J. Niu and I.T.H. Chang, Scr. Mater. 41, 1229 (1999).

    Article  Google Scholar 

  4. H.J. Niu and I.T.H. Chang, Scr. Mater. 41, 25 (1999).

    Article  Google Scholar 

  5. A.N. Chatterjee, S. Kumar, P. Sha, P.K. Mishra, and A.R. Choudhury, Mater. Process. Technol. 136, 151 (2003).

    Article  Google Scholar 

  6. M.A. Taha, A.F. Yousef, K.A. Gany, and H.A. Sabour, Mater.-wiss.u. Werkstofftech, 43, 913 (2012).

  7. A. Simchi and H. Pohl, Mater. Eng. A359, 119 (2003).

    Article  Google Scholar 

  8. E. Jelis, M. Clements, S. Kerwien, N.M. Ravindra, and M.R. Hespos, J. Mater. 67, 582 (2015).

    Google Scholar 

  9. J.M. Holt, Structural Alloys Handbook (West Lafayette: Cindas Purdue University, 1996), 4140 Steel, pp. 1–27.

Download references

Acknowledgements

The authors would like to thank the Edison Welding Institute (EWI) for funding this project. The authors’ appreciation also extends to Dr. Mahdi Jamshidinia for dedicating his time to organizing the data for this paper, and Ms. Mary Reynolds for the editing work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Kelly, S. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material. JOM 68, 869–875 (2016). https://doi.org/10.1007/s11837-015-1804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1804-y

Navigation