Advertisement

JOM

, Volume 68, Issue 3, pp 985–999 | Cite as

Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

  • Joseph T. McKeown
  • Kai Zweiacker
  • Can Liu
  • Daniel R. Coughlin
  • Amy J. Clarke
  • J. Kevin Baldwin
  • John W. Gibbs
  • John D. Roehling
  • Seth D. Imhoff
  • Paul J. Gibbs
  • Damien Tourret
  • Jörg M. K. Wiezorek
  • Geoffrey H. Campbell
Article

Abstract

Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

Notes

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy, by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Activities and personnel at LLNL were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP SCW0974. Activities and personnel at the University of Pittsburgh received support from the National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program through Grant No. DMR 1105757. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396. Activities and personnel at LANL were supported by AJC’s Early Career Award from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering. DTEM sample preparation at LANL was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science.

References

  1. 1.
    W.E. King, JOM 66, 2202 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan and R. Fesperman, in Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes, NISTIR 8036 (National Institute of Standards and Technology, 2015), http://dx.doi.org/10.6028/NIST.IR.8036.
  3. 3.
    P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit, and G. Harlow, JOM 66, 1299 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Gockel, J. Beuth, and K. Taminger, Addit. Manuf. 1–4, 119 (2014).CrossRefGoogle Scholar
  5. 5.
    N.E. Hodge, R.M. Ferencz, and J.M. Solberg, Comput. Mech. 54, 33 (2014).MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Karmath, B. El-dasher, G.F. Gallegos, W.E. King, and A. Sisto, Int. J. Adv. Manuf. Technol. 74, 65 (2014).CrossRefGoogle Scholar
  7. 7.
    S.A. Khairallah and A. Anderson, J. Mater. Process. Technol. 214, 2627 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Martukanitz, P. Michaleris, T. Palmer, T. DebRoy, Z.-K. Liu, R. Otis, T.-W. Heo, and L.-Q. Chen, Addit. Manuf. 1–4, 52 (2014).CrossRefGoogle Scholar
  9. 9.
    P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).CrossRefGoogle Scholar
  10. 10.
    P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2014).CrossRefGoogle Scholar
  11. 11.
    T.I. Zohdi, Comput. Mech. 54, 171 (2014).CrossRefGoogle Scholar
  12. 12.
    D.M. Herlach, Mater. Sci. Eng. R 12, 177 (1994).CrossRefGoogle Scholar
  13. 13.
    J.E. Kline and J.P. Leonard, Appl. Phys. Lett. 86, 201902 (2005).CrossRefGoogle Scholar
  14. 14.
    R. Zhong, A. Kulovits, J.M.K. Wiezorek, and J.P. Leonard, Appl. Surf. Sci. 256, 105 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Kulovits, R. Zhong, J.M.K. Wiezorek, and J.P. Leonard, Thin Solid Films 517, 3629 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Kulovits, J.M.K. Wiezorek, T. LaGrange, B.W. Reed, and G.H. Campbell, Phil. Mag. Lett. 91, 287 (2011).CrossRefGoogle Scholar
  17. 17.
    J.T. McKeown, A.K. Kulovits, C. Liu, K. Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, and G.H. Campbell, Acta Mater. 65, 56 (2014).CrossRefGoogle Scholar
  18. 18.
    J.L. Murray, Al–Cu Phase Diagram ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).
  19. 19.
    J.L. Murray, Al–Si Phase Diagram, ASM Phase Diagrams Database, P. Villars, ed.-in-chief, H. Okamoto and K. Cenzual, section eds., http://www1.asminternational.org/AsmEnterprise/APD (Materials Park, OH: ASM International, 2006).
  20. 20.
    C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Metall. Mater. Trans. B 26, 361 (1995).CrossRefGoogle Scholar
  21. 21.
    D.R. Poirier and E. McBride, Mater. Sci. Eng. A 224, 48 (1997).CrossRefGoogle Scholar
  22. 22.
    Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.-Y. Xie, Mater. Sci. Eng. A 363, 140 (2003).CrossRefGoogle Scholar
  23. 23.
    O.L. Rocha, C.A. Siqueira, and A. Garcia, Metall. Mater. Trans. A 34, 995 (2003).CrossRefGoogle Scholar
  24. 24.
    M.D. Peres, C.A. Siqueira, and A. Garcia, J. Alloys Compd. 381, 168 (2004).CrossRefGoogle Scholar
  25. 25.
    B.L. Zink and F. Hellman, Solid State Commun. 129, 199 (2004).CrossRefGoogle Scholar
  26. 26.
    P.A.D. Jácome, M.C. Landim, A. Garci, A.F. Furtado, and I.L. Ferreira, Thermochim. Acta 523, 142 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).CrossRefGoogle Scholar
  28. 28.
    M. Zimmermann, A. Karma, and M. Carrard, Phys. Rev. B 42, 833 (1990).CrossRefGoogle Scholar
  29. 29.
    M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz, Mater. Sci. Eng. A 134, 1278 (1991).CrossRefGoogle Scholar
  30. 30.
    S.C. Gill, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 2895 (1992).CrossRefGoogle Scholar
  31. 31.
    S.C. Gill and W. Kurz, Acta Metall. Mater. 41, 3563 (1993).CrossRefGoogle Scholar
  32. 32.
    S.C. Gill and W. Kurz, Mater. Sci. Eng. A 173, 335 (1993).CrossRefGoogle Scholar
  33. 33.
    S.C. Gill and W. Kurz, Acta Metall. Mater. 43, 139 (1995).Google Scholar
  34. 34.
    A. Prasad, H. Henein, E. Maire, and C.-A. Gandin, Metall. Mater. Trans. A 37A, 249 (2006).CrossRefGoogle Scholar
  35. 35.
    H.A.H. Steen and A. Hellawell, Acta Metall. 20, 363 (1972).CrossRefGoogle Scholar
  36. 36.
    M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz, Acta Metall. Mater. 40, 1637 (1992).CrossRefGoogle Scholar
  37. 37.
    Y. Birol, J. Mater. Sci. 31, 2139 (1996).CrossRefGoogle Scholar
  38. 38.
    F.A. Espana, V.K. Balla, and A. Bandyopadhyay, Phil. Mag. 91, 574 (2011).CrossRefGoogle Scholar
  39. 39.
    W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber, J. Appl. Phys. 97, 111101 (2005).CrossRefGoogle Scholar
  40. 40.
    J.S. Kim, T. LaGrange, B.W. Reed, M. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, and G.H. Campbell, Science 321, 1472 (2008).CrossRefGoogle Scholar
  41. 41.
    T. LaGrange, G.H. Campbell, B.W. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, and N.D. Browning, Ultramicroscopy 108, 1441 (2008).CrossRefGoogle Scholar
  42. 42.
    B.W. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, and D.J. Masiel, Microsc. Microanal. 15, 272 (2009).CrossRefGoogle Scholar
  43. 43.
    T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M.K. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, and G.H. Campbell, Micron 43, 1108 (2012).CrossRefGoogle Scholar
  44. 44.
    G.H. Campbell, J.T. McKeown, and M.K. Santala, Appl. Phys. Rev. 1, 041101 (2014).CrossRefGoogle Scholar
  45. 45.
    T. LaGrange, B.W. Reed, and D.J. Masiel, MRS Bull. 40, 22 (2015).CrossRefGoogle Scholar
  46. 46.
    W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/, 1997–2014.
  47. 47.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).CrossRefGoogle Scholar
  48. 48.
    S.R. Coriell and R.F. Sekerka, J. Cryst. Growth 61, 499 (1983).CrossRefGoogle Scholar
  49. 49.
    W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).CrossRefGoogle Scholar
  50. 50.
    C. Liu, K. Zweiacker, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 811 (2015).CrossRefGoogle Scholar
  51. 51.
    M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz, Acta Metall. Mater. 40, 983 (1992).CrossRefGoogle Scholar
  52. 52.
    A. Karma and A. Sarkissian, Phys. Rev. Lett. 68, 2616 (1992).CrossRefGoogle Scholar
  53. 53.
    S.J. Pennycook, Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
  54. 54.
    J.C. Baker and J.W. Cahn, Acta Metall. 17, 575 (1969).CrossRefGoogle Scholar
  55. 55.
    P.M. Smith and M.J. Aziz, Acta Metall. Mater. 42, 3515 (1994).CrossRefGoogle Scholar
  56. 56.
    J.L. Murray, Int. Met. Rev. 30, 211 (1985).CrossRefGoogle Scholar
  57. 57.
    R.K. Singh, K. Chattopadhyay, S. Lele, and T.R. Anantharaman, J. Mater. Sci. 17, 1617 (1982).CrossRefGoogle Scholar
  58. 58.
    K. Zweiacker, In-Situ TEM Investigations of Rapid Solidification of Aluminum Copper Alloys, Ph.D. Thesis, University of Pittsburgh, 2015.Google Scholar
  59. 59.
    K. Zweiacker, M.A. Gordillo, C. Liu, J.T. McKeown, T. LaGrange, B.W. Reed, G.H. Campbell, and J.M.K. Wiezorek, Microsc. Microanal. 21, 1465 (2015).CrossRefGoogle Scholar
  60. 60.
    W.J. Boettinger, D. Shechtman, R.J. Schaefer, and F.S. Biancaniello, Metall. Trans. A 15A, 55 (1984).CrossRefGoogle Scholar
  61. 61.
    W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).CrossRefGoogle Scholar
  62. 62.
    M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mater. 39, 1431 (1991).CrossRefGoogle Scholar
  63. 63.
    M.J. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).CrossRefGoogle Scholar
  64. 64.
    M. Gupta and S. Ling, J. Alloys Compd. 287, 284 (1999).CrossRefGoogle Scholar
  65. 65.
    A.M. Prokhorov, V.I. Konov, I. Ursu and I.N. Mihailsecu, Laser Heating of Metals (Adam Hilger, IOP Publishing Ltd., Philadelphia, 1990), pp. 34–36.Google Scholar
  66. 66.
    S.B. Boyden and Y. Zhang, J. Thermophys. Heat Tran. 20, 9 (2006).CrossRefGoogle Scholar
  67. 67.
    B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J.D. Miller, Science 302, 1382 (2003).CrossRefGoogle Scholar
  68. 68.
    D.B. Williams and J.W. Edington, J. Mater. Sci. 12, 126 (1977).CrossRefGoogle Scholar
  69. 69.
    O.A. Atasoy, F. Yilmaz, and R. Elliott, J. Cryst. Growth 66, 137 (1984).CrossRefGoogle Scholar
  70. 70.
    M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 99 (1974).CrossRefGoogle Scholar
  71. 71.
    M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 109 (1974).CrossRefGoogle Scholar
  72. 72.
    M.H. Burden and J.D. Hunt, J. Cryst. Growth 22, 328 (1974).CrossRefGoogle Scholar
  73. 73.
    W.J. Boettinger, in Rapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen and M. Cohen, eds. (New York: Elsevier Science Publishing Co., Inc., 1982).Google Scholar
  74. 74.
    W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans Tech SA, 1984).Google Scholar
  75. 75.
    J.A. Dantzig and M. Rappaz, Solidification (Lausanne: EPFL Press, 2009).CrossRefzbMATHGoogle Scholar
  76. 76.
    W. Kurz and D.J. Fisher, Acta Metall. 29, 11 (1981).CrossRefGoogle Scholar
  77. 77.
    G.J. Merchant and S.H. Davis, Acta Metall. Mater. 38, 2683 (1990).CrossRefGoogle Scholar
  78. 78.
    M. Conti, Phys. Rev. E 58, 6166 (1998).CrossRefGoogle Scholar
  79. 79.
    M. Conti, Phys. Rev. E 58, 6101 (1998).CrossRefGoogle Scholar
  80. 80.
    J. Yota, J. Hander, and A.A. Saleh, J. Vac. Sci. Technol. A 18, 372 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Joseph T. McKeown
    • 1
  • Kai Zweiacker
    • 2
  • Can Liu
    • 2
  • Daniel R. Coughlin
    • 3
  • Amy J. Clarke
    • 3
  • J. Kevin Baldwin
    • 4
  • John W. Gibbs
    • 3
  • John D. Roehling
    • 1
  • Seth D. Imhoff
    • 3
  • Paul J. Gibbs
    • 3
  • Damien Tourret
    • 3
  • Jörg M. K. Wiezorek
    • 2
  • Geoffrey H. Campbell
    • 1
  1. 1.Materials Science DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  3. 3.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations