Advertisement

JOM

, Volume 68, Issue 3, pp 908–919 | Cite as

Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

  • E. S. Dvilis
  • O. L. Khasanov
  • V. N. Gulbin
  • M. S. Petyukevich
  • A. O. Khasanov
  • E. A. Olevsky
Article

Abstract

Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

Notes

Acknowledgements

The work has been supported by the RF Ministry of Education and Science, Project RFMEFI57514X0003, by the State Program “Science”, Project#533 and by TPU Grant IFVT_85_2014. The support of the San Diego State University researcher by the US Department of Energy, Materials Sciences Division, under Award No. DE-SC0008581 is gratefully acknowledged.

References

  1. 1.
    V.A. Artemyev, JTP Lett. 23, 5 (1997).Google Scholar
  2. 2.
    I. Bogachev, E. Olevsky, E. Grigoryev, and O. Khasanov, JOM 66, 1020 (2014).CrossRefGoogle Scholar
  3. 3.
    V.N. Gulbin, V.V. Polivkin, V.V. Cherdyntsev, M.V. Gorshenkov, RF Patent 2509818 (2014)Google Scholar
  4. 4.
    F. Muktepavela, I. Manika, and V. Mironov, Mater. Des. 18, 257 (1997).CrossRefGoogle Scholar
  5. 5.
    V. Mironov, O. Filippov, and I. Boiko, Eston J. Eng. 16, 142 (2010).CrossRefGoogle Scholar
  6. 6.
    M.S. Yurlova, V.D. Demenyuk, L.Y. Lebedeva, D.V. Dudina, E.G. Grigoryev, and E.A. Olevsky, J. Mater. Sci. 49, 952 (2014).CrossRefGoogle Scholar
  7. 7.
    G. Lee, M.S. Yurlova, D. Giuntini, E.G. Grigoryev, O.L. Khasanov, J. McKittrick, and E.A. Olevsky, Ceram. Int. 41, 14973 (2015).CrossRefGoogle Scholar
  8. 8.
    X. Wei, C. Back, O. Izhvanov, O.L. Khasanov, C.D. Haines, and E.A. Olevsky, Materials 8, 6043 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Li, E.A. Olevsky, O.L. Khasanov, C.A. Back, O. Izhvanov, J. Opperman, and H.E. Khalifa, Ceram. Int. 41, 3748 (2015).CrossRefGoogle Scholar
  10. 10.
    E.G. Grigoryev, L.Y. Lebedeva, O.L. Khasanov, and E.A. Olevsky, Adv. Eng. Mater. 16, 792 (2014).CrossRefGoogle Scholar
  11. 11.
    M.S. Yurlova, A.N. Novoselov, Y.S. Lin, O.N. Sizonenko, E.G. Grigoryev, O.L. Khasanov, and E.A. Olevsky, Adv. Eng. Mater. 16, 785 (2014).CrossRefGoogle Scholar
  12. 12.
    A.V. Pustovalov and S.P. Zhuravkov, Adv. Mater. Res. 1097, 3 (2015).CrossRefGoogle Scholar
  13. 13.
    S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Cambridge: Academic Press, 1982), p. 304.Google Scholar
  14. 14.
    T. Ichikawa, Phys. Status Solidi A 29, 293 (1975).CrossRefGoogle Scholar
  15. 15.
    O.L. Khasanov and E.S. Dvilis, J. Eur. Ceram. Soc. 27, 749 (2007).CrossRefGoogle Scholar
  16. 16.
    O.L. Khasanov and E.S. Dvilis, Adv. App. Ceram. 107, 135 (2008).CrossRefGoogle Scholar
  17. 17.
    A.V. Kyulemin, Metall. Mosc 200 (1978)Google Scholar
  18. 18.
    E. Olevsky, Mater. Sci. Eng. R 23, 41 (1998).CrossRefGoogle Scholar
  19. 19.
    W. Li, E.A. Olevsky, J. McKittrick, A.L. Maximenko, and R.M. German, J. Mater. Sci. 47, 7036 (2012).CrossRefGoogle Scholar
  20. 20.
    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).CrossRefGoogle Scholar
  21. 21.
    Z.A. Munir, D.V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).CrossRefGoogle Scholar
  22. 22.
    R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).CrossRefGoogle Scholar
  23. 23.
    S. Grasso, Y. Sakka, and G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • E. S. Dvilis
    • 1
  • O. L. Khasanov
    • 1
  • V. N. Gulbin
    • 2
  • M. S. Petyukevich
    • 1
  • A. O. Khasanov
    • 1
  • E. A. Olevsky
    • 1
    • 3
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussian Federation
  2. 2.National University of Science and Technology MISISMoscowRussian Federation
  3. 3.San Diego State UniversitySan DiegoUSA

Personalised recommendations