JOM

, Volume 68, Issue 3, pp 1021–1026 | Cite as

A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys

  • Brian A. Welk
  • Mark A. Gibson
  • Hamish L. Fraser
Article

Abstract

In this work, compositionally graded specimens were deposited using the laser engineered net-shaping (LENS™) additive manufacturing technique to study the glass-forming ability of two bulk metallic glass (BMG) and high entropy alloy (HEA) composite systems. The first graded specimen varied from Zr57Ti5Al10Cu20Ni8 (BMG) to CoCrFeNiCu0.5 (HEA) and the second graded specimen varied from TiZrCuNb (BMG) to (TiZrCuNb)65Ni35 (HEA). After deposition, laser surface melting experiments were performed parallel to the gradient to remelt and rapidly solidify the specimen. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to determine the morphology and composition variations in the as-deposited and laser surface melted phases. Selected area diffraction of the melt pool regions confirmed an almost fully amorphous region in the first gradient and an amorphous matrix/crystalline dendrite composite structure in the second gradient.

Notes

Acknowledgements

This research has been supported by an exploratory research grant provided by the Center for the Accelerated Maturation of Materials (CAMM) of the Ohio State University. MAG acknowledges the support of CSIRO through the Office of the Chief Executive (OCE) Science Program.

References

  1. 1.
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  2. 2.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li, Sci. Rep. 4, 1 (2014).Google Scholar
  3. 3.
    J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kuhn, and J. Eckert, Intermetallics 31, 282 (2012).CrossRefGoogle Scholar
  4. 4.
    Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and K.C. Shih, Corros. Sci. 47, 2257 (2005).CrossRefGoogle Scholar
  5. 5.
    F. Qin, M. Yoshimura, X. Wang, S. Zhu, A. Kawashima, K. Asami, and A. Inoue, Mater. Trans. 48, 1855 (2007).CrossRefGoogle Scholar
  6. 6.
    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105 (2014).CrossRefGoogle Scholar
  7. 7.
    D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, Nature 451, 1085 (2008).CrossRefGoogle Scholar
  8. 8.
    X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai, J. Non-Cryst. Glass 357, 3557 (2011).CrossRefGoogle Scholar
  9. 9.
    H.Y. Ding and K.F. Yao, J. Non-Cryst. Solids 364, 9 (2013).CrossRefGoogle Scholar
  10. 10.
    H.Y. Ding, Y. Shao, P. Gong, J.F. Li, and K.F. Yao, Mater. Lett. 125, 151 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Cunliffe, J. Plummer, I. Figueroa, and I. Todd, Intermetallics 23, 204 (2012).CrossRefGoogle Scholar
  12. 12.
    P.C. Collins, R. Banerjee, S. Banerjee, and H.L. Fraser, Mater. Sci. Eng. A 352, 118 (2003).CrossRefGoogle Scholar
  13. 13.
    D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J. Suh, A.A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, Sci. Rep. 4, 5357 (2014).CrossRefGoogle Scholar
  14. 14.
    B.A. Welk, H.L. Fraser, V. Dixit, T. Williams, and M.A. Gibson, Metall. Mater. Trans. B 45, 547 (2014).CrossRefGoogle Scholar
  15. 15.
    C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lin, and S.-Y. Chang, Metall. Mater. Trans. A 36A, 881 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Brian A. Welk
    • 1
  • Mark A. Gibson
    • 2
  • Hamish L. Fraser
    • 1
  1. 1.Department of Materials Science and Engineering, Center for the Accelerated Maturation of MaterialsThe Ohio State UniversityColumbusUSA
  2. 2.CSIRO ManufacturingClaytonAustralia

Personalised recommendations