Skip to main content
Log in

Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal–ceramic composites with compositional and functional gradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ASTM International, ASTM Standard, F2792-12a (West Conshohocken, PA, 2012).

  2. J.D. Ayers, R.J. Schaefer, and W.P. Robey, JOM 33, 19 (1981).

    Article  Google Scholar 

  3. D.F. Justin and Brent E. Strucker, U.S. Patent, 7, 632, 575, (2009).

  4. A. Bandyopadhyay and S. Bose, Additive Manufacturing (Boca Raton, FL: CRC Press, 2015).

    Book  Google Scholar 

  5. Sciaky Inc., “Electron Beam Additive Manufacturing”, http://www.sciaky.com/additive-manufacturing/electron-beam-additive-manufacturing-technology. Accessed 24 May 2015.

  6. E.D. Dickens Jr., B.L. Lee, G.A. Taylor, A.J. Magistro and H. Ng, U.S. Patent, 5, 990, 268, (1999).

  7. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Rapid Prototyp. J. 1, 26 (1995).

    Article  Google Scholar 

  8. T.R. Mahale, Dissertation and Abstracts Int., 71-03, B, 1960 (2009).

  9. S. Michaels, E.M. Sachs and M.J. Cima: International Solid Freeform Fabrication Symposium, Austin TX, 244 (1992).

  10. Y.I. Shishkovshy, P. Bertrans, and I. Smurov, Appl. Surf. Sci. 255, 5523 (2009).

    Article  Google Scholar 

  11. K. Kempen, Y.E. Thijs, J.P. Kruth, and J. Van Humbeeck, Phys. Procedia 12, 255 (2011).

    Article  Google Scholar 

  12. P.A. Kobryn and S.L. Semiatin, JOM 53, 40 (2001).

    Article  Google Scholar 

  13. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Metall. Mater. Trans. A 38, 1096 (2007).

    Article  Google Scholar 

  14. O.L. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, and H.A. West, Mater. Sci. Eng. C 28, 366 (2008).

    Article  Google Scholar 

  15. S. Das, J.J. Beama, M. Wohlert, and D.L. Bourell, Rapid Prototyp. J. 4, 112 (1998).

    Article  Google Scholar 

  16. G.P. Dinda, A.K. Dasgupta, and J. Mazumdar, Mater. Sci. Eng. A 509, 98 (2009).

    Article  Google Scholar 

  17. G.J. Ram, C.K. Esplin, and B.E. Strucker, J. Mater. Sci. Mater. Med. 19, 2105 (2008).

    Article  Google Scholar 

  18. K. Monroy, J. Delgado, and J. Ciurana, Procedia Eng. 63, 361 (2013).

    Article  Google Scholar 

  19. Y. Zhang, H. Sahasrabudhe, and A. Bandyopadhyay, Appl. Surf. Sci. 346, 428 (2015).

    Article  Google Scholar 

  20. V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Acta Biomater. 5, 2800 (2009).

    Article  Google Scholar 

  21. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, J. Am. Ceram. Soc. 90, 1347 (2007).

    Article  Google Scholar 

  22. K. Upadhya, J.M. Yang, and W.P. Hoffman, Am. Ceram. Soc. Bull. 76, 51 (1997).

    Google Scholar 

  23. P.C. Collins, R. Banerjee, S. Banerjee, and H.L. Fraser, Mater. Sci. Eng. A 325, 118 (2003).

    Article  Google Scholar 

  24. V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Acta Biomater. 4, 697 (2008).

    Article  Google Scholar 

  25. W. Hofmeister, M. Wert, J. Smugeresky, J.A. Philliber, M. Griffith, and M. Ensz, JOM 51, 1 (1999).

    Google Scholar 

  26. S. Bontha, N.W. Klingbiel, P.A. Kobryn, and H.L. Fraser, J. Mater. Proc. Technol. 178, 135 (2006).

    Article  Google Scholar 

  27. P.A. Farrar and S. Adler, Trans. Met. Soc. AIME, 236, (1966).

  28. A.L. Chamberlain, W.G. Farenholtz, G.E. Hilmas, and D.T. Ellerby, J. Am. Ceram. Soc. 87, 1170 (2004).

    Article  Google Scholar 

  29. H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, JMBBM 53, 239 (2016).

    Google Scholar 

  30. K. Liu, Y. Li, J. Wang, and Q. Ma, Mater. Des. 87, 66 (2015).

    Article  Google Scholar 

  31. H. Sahasrabudhe, R. Harrison, C. Carpenter, and A. Bandyopadhyay, Addit. Manuf. 5, 1 (2015).

    Article  Google Scholar 

  32. S.D. Meshram, T. Mohandas, and G.M. Reddy, J. Mater. Proc. Technol. 184, 330 (2007).

    Article  Google Scholar 

  33. M. Tului, G. Marino, and T. Valente, Surf. Coat. Technol. 201, 2103 (2006).

    Article  Google Scholar 

  34. A.L. Chamberlain, W.G. Farenholtz, G.E. Hilmas, and D.T. Ellerby, J. Am. Ceram. Soc. 89, 3638 (2006).

    Article  Google Scholar 

  35. Ti (Titanium) Binary Alloy Phase Diagrams, in Alloy Phase Diagrams, Vol 3, ASM Handbook, (Materials Park, OH: ASM International, 1992), p. 2.378.

Download references

Acknowledgements

The authors acknowledge financial support from the Joint Center for Aerospace Technological Innovation (JCATI), WA, and the National Science Foundation under the Grant Number CMMI 1538851. Authors also acknowledge the financial support from W. M. Keck Foundation and M. J. Murdock Charitable Trust towards establishing the Biomedical Materials Research Laboratory at WSU. Authors would like to thank Dr. Thomas Williams, School of Geological Sciences of the University of Idaho (Moscow, ID) for help with XRD. The authors would also like to acknowledge experimental support from Ryan Harrison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahasrabudhe, H., Bandyopadhyay, A. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites. JOM 68, 822–830 (2016). https://doi.org/10.1007/s11837-015-1777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1777-x

Navigation