, Volume 68, Issue 3, pp 822–830 | Cite as

Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

  • Himanshu Sahasrabudhe
  • Amit Bandyopadhyay


Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal–ceramic composites with compositional and functional gradation.



The authors acknowledge financial support from the Joint Center for Aerospace Technological Innovation (JCATI), WA, and the National Science Foundation under the Grant Number CMMI 1538851. Authors also acknowledge the financial support from W. M. Keck Foundation and M. J. Murdock Charitable Trust towards establishing the Biomedical Materials Research Laboratory at WSU. Authors would like to thank Dr. Thomas Williams, School of Geological Sciences of the University of Idaho (Moscow, ID) for help with XRD. The authors would also like to acknowledge experimental support from Ryan Harrison.


  1. 1.
    ASTM International, ASTM Standard, F2792-12a (West Conshohocken, PA, 2012).Google Scholar
  2. 2.
    J.D. Ayers, R.J. Schaefer, and W.P. Robey, JOM 33, 19 (1981).CrossRefGoogle Scholar
  3. 3.
    D.F. Justin and Brent E. Strucker, U.S. Patent, 7, 632, 575, (2009).Google Scholar
  4. 4.
    A. Bandyopadhyay and S. Bose, Additive Manufacturing (Boca Raton, FL: CRC Press, 2015).CrossRefGoogle Scholar
  5. 5.
    Sciaky Inc., “Electron Beam Additive Manufacturing”, Accessed 24 May 2015.
  6. 6.
    E.D. Dickens Jr., B.L. Lee, G.A. Taylor, A.J. Magistro and H. Ng, U.S. Patent, 5, 990, 268, (1999).Google Scholar
  7. 7.
    M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Rapid Prototyp. J. 1, 26 (1995).CrossRefGoogle Scholar
  8. 8.
    T.R. Mahale, Dissertation and Abstracts Int., 71-03, B, 1960 (2009).Google Scholar
  9. 9.
    S. Michaels, E.M. Sachs and M.J. Cima: International Solid Freeform Fabrication Symposium, Austin TX, 244 (1992).Google Scholar
  10. 10.
    Y.I. Shishkovshy, P. Bertrans, and I. Smurov, Appl. Surf. Sci. 255, 5523 (2009).CrossRefGoogle Scholar
  11. 11.
    K. Kempen, Y.E. Thijs, J.P. Kruth, and J. Van Humbeeck, Phys. Procedia 12, 255 (2011).CrossRefGoogle Scholar
  12. 12.
    P.A. Kobryn and S.L. Semiatin, JOM 53, 40 (2001).CrossRefGoogle Scholar
  13. 13.
    B.V. Krishna, S. Bose, and A. Bandyopadhyay, Metall. Mater. Trans. A 38, 1096 (2007).CrossRefGoogle Scholar
  14. 14.
    O.L. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, and H.A. West, Mater. Sci. Eng. C 28, 366 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Das, J.J. Beama, M. Wohlert, and D.L. Bourell, Rapid Prototyp. J. 4, 112 (1998).CrossRefGoogle Scholar
  16. 16.
    G.P. Dinda, A.K. Dasgupta, and J. Mazumdar, Mater. Sci. Eng. A 509, 98 (2009).CrossRefGoogle Scholar
  17. 17.
    G.J. Ram, C.K. Esplin, and B.E. Strucker, J. Mater. Sci. Mater. Med. 19, 2105 (2008).CrossRefGoogle Scholar
  18. 18.
    K. Monroy, J. Delgado, and J. Ciurana, Procedia Eng. 63, 361 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, H. Sahasrabudhe, and A. Bandyopadhyay, Appl. Surf. Sci. 346, 428 (2015).CrossRefGoogle Scholar
  20. 20.
    V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Acta Biomater. 5, 2800 (2009).CrossRefGoogle Scholar
  21. 21.
    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, J. Am. Ceram. Soc. 90, 1347 (2007).CrossRefGoogle Scholar
  22. 22.
    K. Upadhya, J.M. Yang, and W.P. Hoffman, Am. Ceram. Soc. Bull. 76, 51 (1997).Google Scholar
  23. 23.
    P.C. Collins, R. Banerjee, S. Banerjee, and H.L. Fraser, Mater. Sci. Eng. A 325, 118 (2003).CrossRefGoogle Scholar
  24. 24.
    V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Acta Biomater. 4, 697 (2008).CrossRefGoogle Scholar
  25. 25.
    W. Hofmeister, M. Wert, J. Smugeresky, J.A. Philliber, M. Griffith, and M. Ensz, JOM 51, 1 (1999).Google Scholar
  26. 26.
    S. Bontha, N.W. Klingbiel, P.A. Kobryn, and H.L. Fraser, J. Mater. Proc. Technol. 178, 135 (2006).CrossRefGoogle Scholar
  27. 27.
    P.A. Farrar and S. Adler, Trans. Met. Soc. AIME, 236, (1966).Google Scholar
  28. 28.
    A.L. Chamberlain, W.G. Farenholtz, G.E. Hilmas, and D.T. Ellerby, J. Am. Ceram. Soc. 87, 1170 (2004).CrossRefGoogle Scholar
  29. 29.
    H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay, JMBBM 53, 239 (2016).Google Scholar
  30. 30.
    K. Liu, Y. Li, J. Wang, and Q. Ma, Mater. Des. 87, 66 (2015).CrossRefGoogle Scholar
  31. 31.
    H. Sahasrabudhe, R. Harrison, C. Carpenter, and A. Bandyopadhyay, Addit. Manuf. 5, 1 (2015).CrossRefGoogle Scholar
  32. 32.
    S.D. Meshram, T. Mohandas, and G.M. Reddy, J. Mater. Proc. Technol. 184, 330 (2007).CrossRefGoogle Scholar
  33. 33.
    M. Tului, G. Marino, and T. Valente, Surf. Coat. Technol. 201, 2103 (2006).CrossRefGoogle Scholar
  34. 34.
    A.L. Chamberlain, W.G. Farenholtz, G.E. Hilmas, and D.T. Ellerby, J. Am. Ceram. Soc. 89, 3638 (2006).CrossRefGoogle Scholar
  35. 35.
    Ti (Titanium) Binary Alloy Phase Diagrams, in Alloy Phase Diagrams, Vol 3, ASM Handbook, (Materials Park, OH: ASM International, 1992), p. 2.378.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.W. M. Keck Biomedical Materials Research Center, School of Mechanical & Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations