, Volume 68, Issue 3, pp 978–984 | Cite as

In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

  • C. Kenel
  • P. Schloth
  • S. Van Petegem
  • J. L. Fife
  • D. Grolimund
  • A. Menzel
  • H. Van Swygenhoven
  • C. Leinenbach


Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103–104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.



The authors thank the Paul Scherrer Institut for providing beamtime at the cSAXS and microXAS beamlines of the Swiss Light Source. They also thank the TOMCAT beamline at the Swiss Light Source for providing the laser system.


  1. 1.
    J.A. Dantzig and M. Rappaz, Solidification, 1st ed. (Lausanne: EPFL Press, 2009).CrossRefzbMATHGoogle Scholar
  2. 2.
    P. Li, V.I. Nikitin, E.G. Kandalova, and K.V. Nikitin, Mater. Sci. Eng. A 332, 371 (2002).CrossRefGoogle Scholar
  3. 3.
    P. Ma, K. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, and J. Eckert, Metals 4, 28 (2014).CrossRefGoogle Scholar
  4. 4.
    R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz, Mater. Trans. 43, 1670 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Li and D. Gu, Mater. Des. 63, 856 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Hussein, L. Hao, C. Yan, and R. Everson, Mater. Des. 52, 638 (2013).CrossRefGoogle Scholar
  7. 7.
    D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe, Acta Mater. 60, 3849 (2012).CrossRefGoogle Scholar
  8. 8.
    R. Chou, J. Milligan, M. Paliwal, and M. Brochu, JOM 67, 590 (2015).CrossRefGoogle Scholar
  9. 9.
    J.L. Fife, M. Rappaz, M. Pistone, T. Celcer, G. Mikuljan, and M. Stampanoni, J. Synchrotron Radiat. 19, 352 (2012).CrossRefGoogle Scholar
  10. 10.
    C. Kenel and C. Leinenbach, J. Alloys Compd. 637, 242 (2015).CrossRefGoogle Scholar
  11. 11.
    W. De Nolf, F. Vanmeert, and K. Janssens, J. Appl. Crystallogr. 47, 1107 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Kenel, D. Grolimund, J.L. Fife, V.A. Samnson, S. Van Petegem, H. Van Swygenhoven, and C. Leinenbach, Scr. Mater. 114, 117 (2016).CrossRefGoogle Scholar
  13. 13.
    Y.-W. Kim, JOM 46, 30 (1994).CrossRefGoogle Scholar
  14. 14.
    H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Adv. Eng. Mater. 10, 707 (2008).CrossRefGoogle Scholar
  15. 15.
    P. Bartolotta, J. Barret, T. Kelly, and R. Smashey, JOM 49, 48 (1997).CrossRefGoogle Scholar
  16. 16.
    C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, Acta Metall. 37, 1321 (1989).CrossRefGoogle Scholar
  17. 17.
    J. Liu, P. Staron, S. Riekehr, A. Stark, N. Schell, N. Huber, A. Schreyer, M. Müller, and N. Kashaev, Intermetallics 62, 27 (2015).CrossRefGoogle Scholar
  18. 18.
    T. Sentenac, Y. Le Maoultt, G. Rolland, and M. Devy, IEEE Trans. Instrum. Meas. 52, 46 (2003).CrossRefGoogle Scholar
  19. 19.
    P. Schloth, J.N. Wagner, J.L. Fife, A. Menzel, J.-M. Drezet, and H. Van Swygenhoven, Appl. Phys. Lett. 105, 101908 (2014).CrossRefGoogle Scholar
  20. 20.
    P. Schloth, A. Menzel, J.L. Fife, J.N. Wagner, H. Van Swygenhoven, and J.-M. Drezet, Scr. Mater. 108, 56 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Empa - Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  2. 2.Swiss Light SourcePaul Scherrer InstitutVilligen PsiSwitzerland
  3. 3.École Polytechnique Fédérale de Lausanne, STI-IMX-LSMXLausanneSwitzerland
  4. 4.École Polytechnique Fédérale de Lausanne, STI-IMX-NXMMLausanneSwitzerland

Personalised recommendations