, Volume 68, Issue 3, pp 950–959 | Cite as

Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy

  • Y. Idell
  • L. E. Levine
  • A. J. Allen
  • F. Zhang
  • C. E. Campbell
  • G. B. Olson
  • J. Gong
  • D. R. Snyder
  • H. Z. Deutchman


An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. Initially, each layer undergoes rapid solidification as it is melted by the laser; however, as the part is built, the underlying layers experience a variety of heating and cooling cycles that produce significant microsegregation of niobium which allows for the formation of the deleterious δ-phase. The as-built microstructure was characterized through Vickers hardness, optical microscopy, scanning and transmission electron microscopy, electron back-scattering diffraction, x-ray diffraction, and synchrotron x-ray microLaue diffraction. The isothermal formation and growth of the δ-phase were characterized using synchrotron-based in situ small angle and wide angle x-ray scattering experiments. These experimental results are compared with multicomponent diffusion simulations that predict the phase fraction and composition. The high residual stresses and unexpected formation of the δ-phase will require further annealing treatments to be designed so as to remove these deficiencies and obtain an optimized microstructure.



The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CG11357. Research performed in part at the NIST Center for Nanoscale Science and Technology. This material is based upon work supported by the Defense Advanced Research Projects Agency under Contract No. HROO 11-12-C-0037. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency.


  1. 1.
    D.M. Shah and D.N. Duhl: Proc. 5th Int. Symp. Superalloys, vol 1 (1984) p. 105.Google Scholar
  2. 2.
    X. Xie, G. Wang, J. Dong, C. Xu, W. Cao, and R. Kennedy: Proc. 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., vol 1, (2005), p. 179.Google Scholar
  3. 3.
    W. Cao and R. Kennedy: Proc. 10th Int. Symp. Superalloys 2004, vol 1 (2004) p. 91.Google Scholar
  4. 4.
    C.L. Thomas, T.M. Gaffney, S. Kaza, and C.H. Lee, Proc. Aero. App. Conf. (1996). doi: 10.1109/AERO.1996.499663.Google Scholar
  5. 5.
    Y. Song, Y. Yan, R. Zhang, D. Xu, and F. Wang, J. Mater. Process. Technol. 120, 237 (2002).CrossRefGoogle Scholar
  6. 6.
    K. Giannatsis and V. Dedoussis, Int. J. Adv. Des. Manuf. Technol. 40, 116 (2009).CrossRefGoogle Scholar
  7. 7.
    E. Sachlos and J.T. Czernuszka, Eur. Cells Mater. 5, 29 (2003).CrossRefGoogle Scholar
  8. 8.
    N.A. Waterman and P. Dickens, World Class Des. Manuf. 1, 27 (1994). doi: 10.1108/09642369210056629.CrossRefGoogle Scholar
  9. 9.
    ASTM, Annual Book of ASTM Standards (2010). doi: 10.1520/F2792-10.
  10. 10.
    A. Simchi, F. Petzoldt, and H. Pohl, J. Mater. Process. Technol. 141, 319 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).CrossRefGoogle Scholar
  12. 12.
    G.J. Booysen, M. Truscott, J. Els, and D.J. De Beer, Innovative Dev. Des. Manuf., Proc. 5th Int. Conf. Adv. Res. Rapid Prototyping, vol 1, (2011), p. 145.Google Scholar
  13. 13.
    P.L. Blackwell, J. Mater. Process. Technol. 170, 240 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Delgado, J. Ciurana, and C.A. Rodriguez, J. Adv. Manuf. Technol. 60, 601 (2012).CrossRefGoogle Scholar
  15. 15.
    J.P. Kruth, G. Levy, F. Klocke, and T. Childs, CIRP Ann. 56, 730 (2012).CrossRefGoogle Scholar
  16. 16.
    Q. Jia and D. Gu, J. Alloys Compd. 585, 713 (2014).CrossRefGoogle Scholar
  17. 17.
    ATI, “718Plus Alloy Datasheet, UNS NO7818.” Accessed 25 Aug 2015.
  18. 18.
    J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long, J. Appl. Crystallogr. 42, 469 (2009).CrossRefGoogle Scholar
  19. 19.
    J. Ilavsky, F. Zhang, A.J. Allen, L.E. Levine, P.R. Jemian, and G.G. Long, Metall. Mater. Trans. A 44, 68 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Ilavsky, A.J. Allen, L.E. Levine, F. Zhang, P.R. Jemian, and G.G. Long, J. Appl. Crystallogr. 45, 1318 (2012).CrossRefGoogle Scholar
  21. 21.
    L. Levine, B. Larson, W. Yang, M.E. Kassner, J. Tischler, M.A. Delos-Reyes, R.J. Fields, and W. Liu, Nat. Mater. 5, 619 (2006).CrossRefGoogle Scholar
  22. 22.
    L. Levine, C. Okoro, and R. Xu, IUCrJ. (2015). doi: 10.1107/S2052252515015031.Google Scholar
  23. 23.
    J. Wang, B.H. Toby, P.L. Lee, L. Ribaud, S.M. Antao, C. Kirtz, M. Ramanthan, R.B. Von Dreele, and M.A. Beno, Rev. Sci. Instrum. 79, 085105 (2008).CrossRefGoogle Scholar
  24. 24.
    P. Pranaam, F.J. Margetan, and R.B. Thompson, AIP Conf. Proc. 700, 1061 (2004).CrossRefGoogle Scholar
  25. 25.
    O. Messe, J. Barnard, E. Pickering, P. Midgley, and C. Rae, Philos. Mag. 94, 1132 (2014).CrossRefGoogle Scholar
  26. 26.
    E. Pickering, H. Mathus, A. Bhowmik, O. Messe, J. Barnard, M. Hardy, R. Krakow, K. Loehnert, H. Stone, and C. Rae, Acta Mater. 60, 2757 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Metall. Mater. Trans. A 19, 453 (1988).CrossRefGoogle Scholar
  28. 28.
    K. Unocic, R. Hayes, M. Mills, and G. Daehn, Metall. Mater. Trans. A 41, 409 (2010).CrossRefGoogle Scholar
  29. 29.
    W. Cao, Proc. 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv, vol 1 (2005), p. 165.Google Scholar
  30. 30.
    R.E. Schafrik, D.D. Ward, and J.R. Groh, Proc. 5th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., vol 1 (2001), p. 1.Google Scholar
  31. 31.
    S. Azadian, L.Y. Wei, and R. Warren, Mater. Charact. 53, 7 (2004).CrossRefGoogle Scholar
  32. 32.
    H. Zhang, S. Zhang, M. Cheng, and Z. Li, Mater. Charact. 61, 49 (2010).CrossRefGoogle Scholar
  33. 33.
    Y. Huang and T.G. Langdon, J. Mater. Sci. 42, 421 (2007).CrossRefGoogle Scholar
  34. 34.
    J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).CrossRefGoogle Scholar
  35. 35.
    Z. Jian and W. Hejing, Chin. J. Geochem. 22, 38 (2003).CrossRefGoogle Scholar
  36. 36.
    M. Wojdry, J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
  37. 37.
    J.B. Nelson and D.P. Riley, Proc. Phys. Soc. Lond. 57, 160 (1945).CrossRefGoogle Scholar
  38. 38.
    B. Cullity and S. Stock, Elements of X-ray Diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).Google Scholar
  39. 39.
    G.H. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  40. 40.
    Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, J. Alloys Compd 513, 518 (2012).CrossRefGoogle Scholar
  41. 41.
    K. Amato, S. Gaytan, L. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012).CrossRefGoogle Scholar
  42. 42.
    K. Amato, J. Hernandez, L. Murr, E. Martinez, S. Gaytan, and P. Shindo, J. Mater. Sci. Res. 1, 3 (2012).Google Scholar
  43. 43.
    K. Mumtz, P. Erasenthiran, and N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008).CrossRefGoogle Scholar
  44. 44.
    M.C. Flemings, Metall. Trans. 5, 2121 (1974).CrossRefGoogle Scholar
  45. 45.
    W. Kurz and D.J. Fischer, Fundamentals of Solidification, 1st ed. (Adermannsdorf: Trans-Tech. Publications, 1986).Google Scholar
  46. 46.
    M. Rappaz, S.A. David, J.M. Vitek, and L.A. Boatner, Metall. Trans. A 20, 1125 (1989).CrossRefGoogle Scholar
  47. 47.
    S.A. David, J.M. Vitek, M. Rappaz, and L.A. Boatner, Metall. Trans. A 21, 1753 (1990).CrossRefGoogle Scholar
  48. 48.
    J.M. Vitek, S.A. David, M. Rappaz, and L.A. Boatner, Int. Trends Weld. Sci. Technol., Proc. 3rd Int. Conf. Trends Weld. Res., vol 1, (1993), p. 167.Google Scholar
  49. 49.
    TCS Ni-Alloys database v6.1, Thermo-Calc Software, (Stockholm, 2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2016

Authors and Affiliations

  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.QuesTek Innovations, LLC.EvanstonUSA
  3. 3.Honeywell InternationalPhoenixUSA

Personalised recommendations