JOM

, Volume 68, Issue 3, pp 860–868 | Cite as

Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

  • Harish Irrinki
  • Michael Dexter
  • Brenton Barmore
  • Ravi Enneti
  • Somayeh Pasebani
  • Sunil Badwe
  • Jason Stitzel
  • Rajiv Malhotra
  • Sundar V. Atre
Article

Abstract

The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500–1100 MPa; hardness: 25–39 HRC; elongation: 10–25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

Notes

Acknowledgement

The authors thank the Walmart Foundation for funding the research project.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A. Simchi and H. Pohl, Mater. Sci. Eng. A 383, 191 (2004).CrossRefGoogle Scholar
  2. 2.
    F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, J. Mater. Process. Technol. 111, 210 (2001).CrossRefGoogle Scholar
  3. 3.
    S.S. Dimov, D.T. Pham, F. Lacan, and K.D. Dotchev, Assembly Autom. 21, 296 (2001).CrossRefGoogle Scholar
  4. 4.
    D. King and T. Tansey, J. Mater. Process. Technol. 121, 313 (2002).CrossRefGoogle Scholar
  5. 5.
    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Mater. Process. Technol. 149, 616 (2004).CrossRefGoogle Scholar
  6. 6.
    D. Atkinson, Rapid Prototyping and Tooling: A Practical Guide (Herts: Strategy Publication, 1997).Google Scholar
  7. 7.
    H.J. Niu and I.T.H. Chang, Scripta Mater. 41, 25 (1999).CrossRefGoogle Scholar
  8. 8.
    L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo, J. Mater. Res. Technol. 1, 167 (2012).CrossRefGoogle Scholar
  9. 9.
    P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon, Acta Mater. 51, 1651 (2003).CrossRefGoogle Scholar
  10. 10.
    G.B. Prabhu and D.L. Bourell, in Proc. Solid Freeform Fabr. Symp., (1993), p. 317.Google Scholar
  11. 11.
    K.W. Dalgarno and C.S. Wright, Powder Met. Prog. 1, 70 (2001).Google Scholar
  12. 12.
    A. Simchi and H. Pohl, Mater. Sci. Eng. A 359, 119 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Sun, R. Zhou, J. Lud, and J. Mazumder, Acta Mater. 84, 172 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Simchi and H. Pohl, Mater. Sci. Eng. A 383, 191 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, Appl. Surf. Sci. 256, 4350 (2001).CrossRefGoogle Scholar
  17. 17.
    H.J. Niu and I.T.H. Chang, Scripta Mater. 41, 25 (1999).CrossRefGoogle Scholar
  18. 18.
    R.M. German, Powder Metallurgy of Iron and Steel (New York: Wiley & Sons, Inc., 1998), p. 393.Google Scholar
  19. 19.
    L. Tyler, T. Nakamoto, K. Horikawa, and H. Kobayashi, Mater. Des. 81, 44 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Gratton, Proceedings of the National Conference of Undergraduate Research (2012).Google Scholar
  21. 21.
    L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, and R.B. Wicker, J. Mater. Res. Technol. 1, 42 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Kumpaty, S. Kamara, B. Tomlin, J. Yoo, H. Kumpaty, D. Anderson, M. Govindaraju, K. Nitin, and K. Balasubramanian, Adv. Mater. Res. 699, 795 (2013).CrossRefGoogle Scholar
  23. 23.
    T. Lore, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Hengfeng, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, in Proc. Solid Freeform Fabr. Symp., (2013), p. 474.Google Scholar
  25. 25.
    A. Simchi and H. Asgharzadeh, Mater. Sci. Technol 20, 1462 (2004).CrossRefGoogle Scholar
  26. 26.
    A.B. Spierings, G. Levy, and K. Wegener, Proceedings of Solid Freeform Fabrication Symposium, 2012 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.University of LouisvilleLouisvilleUSA
  2. 2.Oregon State UniversityCorvallisUSA
  3. 3.Global Tungsten & Powders CorporationTowandaUSA
  4. 4.North American HoganasJohnstownUSA
  5. 5.Metal Technologies IncorporatedAlbanyUSA

Personalised recommendations