Advertisement

JOM

, Volume 68, Issue 3, pp 791–798 | Cite as

The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

  • Y. Y. Sun
  • S. Gulizia
  • C. H. Oh
  • D. Fraser
  • M. Leary
  • Y. F. Yang
  • M. Qian
Article

Abstract

Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650-μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

Notes

Acknowledgements

Y.Y. Sun acknowledges the support of the China Scholarship Council (CSC) for a CSC scholarship. M. Qian acknowledges the support of the Australian Research Council (ARC) through the Discovery Project Grant of DP150104719. Useful discussions with Prof. H.P. Tang, Director of the State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an, China, are acknowledged.

References

  1. 1.
    G. Chahine, M. Koike, T. Okabe, P. Smith, and R. Kovacevic, JOM 60, 50 (2008).CrossRefGoogle Scholar
  2. 2.
    O.L. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, and H.A. West, Mater. Sci. Eng., C 28, 366 (2008).CrossRefGoogle Scholar
  3. 3.
    L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, and R.B. Wicker, Int. J. Biomater. 2012, 245727 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Gaytan, L.E. Murr, F. Medina, E. Martinez, L. Martinez, and R.B. Wicker, TMS 139th Annual Meeting & Exhibition, vol. 1, 2010, pp. 283–290.Google Scholar
  5. 5.
    M. Jamshidinia and R. Kovacevic, Surf. Topog. Met. Prop. 3, 014003 (2015).CrossRefGoogle Scholar
  6. 6.
    C.M. Haslauer, J.C. Springer, O.L. Harrysson, E.G. Loboa, N.A. Monteiro-Riviere, and D.J. Marcellin-Little, Med. Eng. Phys. 32, 645 (2010).CrossRefGoogle Scholar
  7. 7.
    H. Tang, S. Lu, W. Jia, G. Yang, and M. Qian, Int. J. Powder Metall. 50, 57 (2014).Google Scholar
  8. 8.
    W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).CrossRefGoogle Scholar
  9. 9.
    D. Greitemeier, C. Dalledonne, F. Syassen, J. Eufinger, and T. Melz, Mater. Sci. Technol. (2015). doi: 10.1179/1743284715Y.0000000053.Google Scholar
  10. 10.
    G.M. Mala and D. Li, Int. J. Heat Fluid Flow 20, 142 (1999).CrossRefGoogle Scholar
  11. 11.
    S.G. Kandlikar, S. Joshi, and S. Tian, Heat Trans. Eng. 24, 4 (2003).CrossRefGoogle Scholar
  12. 12.
    I. Mingareev, T. Bonhoff, A.F. El-Sherif, W. Meiners, I. Kelbassa, T. Biermann, and M. Richardson, J. Laser Appl. 25, 052009 (2013).CrossRefGoogle Scholar
  13. 13.
    K.S. Chan, M. Koike, R.L. Mason, and T. Okabe, Metall. Mater. Trans. A 44, 1010 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 061016 (2013).CrossRefGoogle Scholar
  15. 15.
    A.T. Beaucamp, Y. Namba, P. Charlton, and A.A. Graziano, ASPE Spring MeetingAdditive Manufacturing, California, 2014.Google Scholar
  16. 16.
    Y. Bao, J. Newkirk, J. Ruan, T.E. Sparks, and F. Liou, J. Manuf. Proc. 10, 56 (2008).CrossRefGoogle Scholar
  17. 17.
    E. Yasa, J. Deckers, T. Craeghs, M. Badrossamay, and J.P. Kruth, International Solid Freeform Fabrication Symposium, Austin, 2009.Google Scholar
  18. 18.
    J.W. Dini, Am. Mach. Spec. Rep. 768, 113 (1984).Google Scholar
  19. 19.
    ASME B46.1-2009: Surface Texture (Roughness, Waviness and Lay).Google Scholar
  20. 20.
    M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park: ASM International, 2000).Google Scholar
  21. 21.
    S.F. Lamolle, M. Monjo, M. Rubert, H.J. Haugen, S.P. Lyngstadaas, and J.E. Ellingsen, Biomaterials 30, 736 (2009).CrossRefGoogle Scholar
  22. 22.
    M.J. Frank, M.S. Walter, S.P. Lyngstadaas, E. Wintermantel, and H.J. Haugen, Mater. Sci. Eng., C 33, 1282 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Y. Y. Sun
    • 1
  • S. Gulizia
    • 2
  • C. H. Oh
    • 2
  • D. Fraser
    • 2
  • M. Leary
    • 1
  • Y. F. Yang
    • 1
  • M. Qian
    • 1
  1. 1.School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive ManufacturingRMIT UniversityMelbourneAustralia
  2. 2.Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing FlagshipMelbourneAustralia

Personalised recommendations