Advertisement

JOM

, Volume 68, Issue 3, pp 1027–1030 | Cite as

The Effect of Nanosized Pb Liquid Phase on the Damping Behavior in Aluminum Matrix Composite Based on the 2024Al-BaPbO3 System

  • G. H. Fan
  • L. Geng
  • H. Wu
  • Z. Z. Zheng
  • Q. C. Meng
Article

Abstract

An aluminum matrix composite containing nanosized Pb particles was fabricated by a powder metallurgy technique based on the 2024Al-BaPbO3 system. The composite exhibited a high and broad damping peak at the melting temperature range of nanosized Pb particles. The increase in value and breadth of the damping peak was attributed to the dislocation damping of the interfacial matrix close to the nanosized Pb liquid phase. The damping peak is expected to be enhanced by further refining the Pb particle size.

Notes

Acknowledgement

This work was financially supported by (I) the Heilongjiang province Natural Science Foundation (Contract No.: ZJC 0604) and (II) the “973” program of China (Project No.: 2008CB617604).

References

  1. 1.
    S.C. Tjong and Z.Y. Ma, Mater. Sci. Eng. R 29, 49 (2000).CrossRefGoogle Scholar
  2. 2.
    O. Beffort, S.Y. Long, C. Cayron, J. Kuebler, and P.A. Buffat, Comp. Sci. Tech. 67, 737 (2007).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, R.S. Mishra, and T.J. Watson, Scripta Mater. 59, 1079 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Zhang, R.J. Perez, and E.J. Lavernia, Acta Metall. Mater. 42, 395 (1994).CrossRefGoogle Scholar
  5. 5.
    Z. Trojanova, A. Mielczarek, W. Riehemann, and P. Lukac, Comp. Sci. Tech. 66, 585 (2006).CrossRefGoogle Scholar
  6. 6.
    J. Zhang, E. Perez, and E.J. Lavernia, J. Mater. Sci. 28, 835 (1993).CrossRefGoogle Scholar
  7. 7.
    C.S. Kang, K. Maeda, K.J. Wang, and K. Wakashima, Acta Mater. 46, 1209 (1998).CrossRefGoogle Scholar
  8. 8.
    C. Wang and Z.G. Zhu, Scripta Mater. 38, 1739 (1998).CrossRefGoogle Scholar
  9. 9.
    G.H. Fan, L. Geng, Z.Z. Zheng, and G.S. Wang, Scripta Mater. 59, 534 (2008).CrossRefGoogle Scholar
  10. 10.
    J.M. Zhang, R.J. Perez, C.R. Wong, and E.J. Lavernia, Mater. Sci. Eng. R 13, 325 (1994).CrossRefGoogle Scholar
  11. 11.
    A.K. Malhotra and D.C. Vanaken, Acta Metall. Mater. 41, 1337 (1993).CrossRefGoogle Scholar
  12. 12.
    A. Wolfenden, L.S. Cook, and J.M. Wolla, Mechanics and mechanism of materials damping, ed. V.K. Kinra and A. Wolfenden (Philadelphia: ASTM International, 1992), p. 206.Google Scholar
  13. 13.
    A. Wolfenden and W.H. Robinson, Acta Metall. Mater. 25, 823 (1977).CrossRefGoogle Scholar
  14. 14.
    J. Hu, X.F. Wang, and S.W. Tang, Comp. Sci. Tech. 68, 2297 (2008).CrossRefGoogle Scholar
  15. 15.
    G.H. Fan, L. Geng, Z.Z. Zheng, G.S. Wang, and Y.C. Feng, Mater. Sci. Eng. A 496, 281 (2008).CrossRefGoogle Scholar
  16. 16.
    L.S. Cook and R.S. Lakes, Scripta Mater. 32, 773 (1995).CrossRefGoogle Scholar
  17. 17.
    H.W. Sheng, Z.Q. Hu, and K. Lu, Nanostruct. Mater. 9, 661 (1997).CrossRefGoogle Scholar
  18. 18.
    H.W. Sheng, K. Lu, and E. Ma, Acta Mater. 46, 5195 (1998).CrossRefGoogle Scholar
  19. 19.
    D.R. Askeland and P.P. Phule, Essentials of materials science and engineering (Stamford: Nelson, 2004), pp. 124–138.Google Scholar
  20. 20.
    E.A. Olson, M.Y. Efremov, M. Zhang, Z. Zhang, and L.H. Allen, J. Appl. Phys. 97, 0343041 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • G. H. Fan
    • 1
  • L. Geng
    • 1
  • H. Wu
    • 1
  • Z. Z. Zheng
    • 1
  • Q. C. Meng
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations