Abstract
The development of low dimensional explicit based topology optimization approaches such as moving morphable components method increased the hopes to develop and expand evolutionary based solutions in the topology optimization of continuum structures. Despite the low dimensionality of the parametrization which helps to increase the efficiency, due to the multimodal behavior of the objective function and the correlation between the design variables more researches should be done to improve the efficiency. This paper is dedicated to comparing nine non-gradient approach based approaches based on the moving morphable parameterization. The algorithms are compared by the convergence speed, the quality of final designs, and the abilities to explore and exploit based on a diversity index. It is demonstrated that only some of these algorithms can lead to globally optimal solutions. This research clarifies the ability of the aforementioned algorithms to solve the topology optimization problem which can help future researchers to develop more suitable and efficient algorithms for this problem.
This is a preview of subscription content, access via your institution.

















References
- 1.
Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654. https://doi.org/10.1007/s004190050248
- 2.
Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidiscip Optim 27(1–2):1–19. https://doi.org/10.1007/s00158-003-0363-y
- 3.
Apte AP, Wang BP (2008) Topology optimization using hyper radial basis function network. AIAA J 46(9):2211–2218. https://doi.org/10.2514/1.28723
- 4.
Overvelde, J. T. (2012). The moving node approach in topology optimization [Master Thesis].
- 5.
Lin J, Guan Y, Zhao G, Naceur H, Lu P (2017) Topology optimization of plane structures using smoothed particle hydrodynamics method. Int J Numer Meth Eng 110(8):726–744. https://doi.org/10.1002/nme.5427
- 6.
Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J Appl Mech. https://doi.org/10.1115/1.4027609
- 7.
Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327. https://doi.org/10.1016/j.cma.2015.05.005
- 8.
Smith H, Norato JA (2020) A MATLAB code for topology optimization using the geometry projection method. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02552-0
- 9.
Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614. https://doi.org/10.1016/j.cma.2017.05.002
- 10.
Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413. https://doi.org/10.1016/j.cma.2018.01.050
- 11.
Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves. Struct Multidiscip Optim 61(3):963–982. https://doi.org/10.1007/s00158-019-02398-1
- 12.
Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818. https://doi.org/10.1016/j.cma.2018.10.011
- 13.
Zhang W, Li D, Kang P, Guo X, Youn SK (2020) Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 360:112685. https://doi.org/10.1016/j.cma.2019.112685
- 14.
Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260. https://doi.org/10.1007/s00158-015-1372-3
- 15.
Zhang W, Zhang J, Guo X (2016) Lagrangian description based topology optimization: a revival of shape optimization. J Appl Mech. https://doi.org/10.1115/1.4032432
- 16.
Yang H, Huang J (2020) An explicit structural topology optimization method based on the descriptions of areas. Struct Multidiscip Optim 61(3):1123–1156. https://doi.org/10.1007/s00158-019-02414-4
- 17.
Wang R, Zhang X, Zhu B (2019) Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693. https://doi.org/10.1016/j.cma.2019.04.007
- 18.
Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidiscip Optim 61(1):187–205. https://doi.org/10.1007/s00158-019-02353-0
- 19.
Niu B, Wadbro E (2019) On equal-width length-scale control in topology optimization. Struct Multidiscip Optim 59(4):1321–1334. https://doi.org/10.1007/s00158-018-2131-z
- 20.
Hoang VN, Nguyen NL, Nguyen-Xuan H (2020) Topology optimization of coated structure using moving morphable sandwich bars. Struct Multidiscip Optim 61(2):491–506
- 21.
Cui T, Sun Z, Liu C et al (2020) Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach. Acta Mech Sin. https://doi.org/10.1007/s10409-020-00944-5
- 22.
Sun Z, Cui R, Cui T et al (2020) An optimization approach for stiffener layout of composite stiffened panels based on moving morphable components (MMCs). Acta Mech Solida Sin. https://doi.org/10.1007/s10338-020-00161-4
- 23.
Marzbanrad, J., & Rostami, P. (2020, January). Weight optimization of thick plate structures using radial basis functions parameterization. In IOP Conference Series: Materials Science and Engineering (Vol. 671, No. 1, p. 012011). IOP Publishing. Doi: https://doi.org/10.1007/s10409-020-00942-7.
- 24.
Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech. https://doi.org/10.1115/1.4041319
- 25.
Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal–fluid problem using the MMC-based approach. Struct Multidiscip Optim 60(1):151–165. https://doi.org/10.1007/s00158-019-02206-w
- 26.
Liu D, Du J (2019) A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imag 38(12):2937–2948. https://doi.org/10.1109/TMI.2019.2918566
- 27.
Sun J, Tian Q, Hu H, Pedersen NL (2018) Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dyn 93(2):413–441. https://doi.org/10.1007/s11071-018-4201-6
- 28.
Sun J, Tian Q, Hu H, Pedersen NL (2019) Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. J Sound Vib 448:83–107. https://doi.org/10.1016/j.jsv.2019.01.054
- 29.
Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63. https://doi.org/10.1016/j.cma.2017.05.003
- 30.
Takalloozadeh M, Yoon GH (2017) Implementation of topological derivative in the moving morphable components approach. Finite Elem Anal Des 134:16–26. https://doi.org/10.1016/j.finel.2017.05.008
- 31.
Wang, S. Y., & Tai, K. (2003, December). A bit-array representation GA for structural topology optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 671–677). IEEE. Doi: https://doi.org/10.1109/CEC.2003.1299640.
- 32.
Chapman CD (1996) Genetic algorithm-based structural topology design with compliance and manufacturability considerations. J Mech Design 118:89–98
- 33.
Kita E, Tanie H (1999) Topology and shape optimization of continuum structures using GA and BEM. Struct Optim 17(2–3):130–139. https://doi.org/10.1007/BF01195937
- 34.
Tai K, Chee TH (2000) Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J Mech Des 122(4):560–566. https://doi.org/10.1115/1.1319158
- 35.
Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30(2):113–127. https://doi.org/10.1007/s00158-004-0504-y
- 36.
Cappello F, Mancuso A (2003) A genetic algorithm for combined topology and shape optimisations. Comput Aided Des 35(8):761–769. https://doi.org/10.1016/S0010-4485(03)00007-1
- 37.
Wang SY, Tai K (2004) Graph representation for structural topology optimization using genetic algorithms. Comput Struct 82(20–21):1609–1622. https://doi.org/10.1016/j.compstruc.2004.05.005
- 38.
Bureerat S, Kunakote T (2006) Topological design of structures using population-based optimization methods. Inverse Probl Sci Eng 14(6):589–607. https://doi.org/10.1080/17415970600573437
- 39.
Bureerat S, Limtragool J (2006) Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem Anal Des 42(6):547–566. https://doi.org/10.1016/j.finel.2005.10.011
- 40.
Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using ant colony methodology. Eng Struct 30(9):2559–2565. https://doi.org/10.1016/j.engstruct.2008.02.012
- 41.
Luh GC, Lin CY (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9(4):1343–1353. https://doi.org/10.1016/j.asoc.2009.06.001
- 42.
Luh GC, Lin CY, Lin YS (2011) A binary particle swarm optimization for continuum structural topology optimization. Appl Soft Comput 11(2):2833–2844. https://doi.org/10.1016/j.asoc.2010.11.013
- 43.
Bureerat S, Limtragool J (2008) Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem Anal Des 44(12–13):738–747. https://doi.org/10.1016/j.finel.2008.04.002
- 44.
Balamurugan R, Ramakrishnan CV, Singh N (2008) Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl Soft Comput 8(4):1607–1624. https://doi.org/10.1016/j.asoc.2007.10.022
- 45.
Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2011) A hybrid topology optimization methodology combining simulated annealing and SIMP. Comput Struct 89(15–16):1512–1522. https://doi.org/10.1016/j.compstruc.2011.04.008
- 46.
Cardillo A, Cascini G, Frillici FS, Rotini F (2013) Multi-objective topology optimization through GA-based hybridization of partial solutions. Eng Comput 29(3):287–306. https://doi.org/10.1007/s00366-012-0272-z
- 47.
Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2013) An improved robust topology optimization approach using multiobjective evolutionary algorithms. Comput Struct 125:1–10. https://doi.org/10.1016/j.compstruc.2013.04.025
- 48.
Ahmed F, Deb K, Bhattacharya B (2016) Structural topology optimization using multi-objective genetic algorithm with constructive solid geometry representation. Appl Soft Comput 39:240–250. https://doi.org/10.1016/j.asoc.2015.10.063
- 49.
Pandey A, Datta R, Bhattacharya B (2017) Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft Comput 21(5):1157–1179. https://doi.org/10.1007/s00500-015-1845-8
- 50.
Valdez SI, Marroquín JL, Botello S, Faurrieta N (2018) A meta-heuristic for topology optimization using probabilistic learning. Appl Intell 48(11):4267–4287. https://doi.org/10.1007/s10489-018-1215-1
- 51.
Li B, Xuan C, Tang W, Zhu Y, Yan K (2019) Topology optimization of plate/shell structures with respect to eigenfrequencies using a biologically inspired algorithm. Eng Optim 51(11):1829–1844. https://doi.org/10.1080/0305215X.2018.1552952
- 52.
Bielefeldt BR, Reich GW, Beran PS, Hartl DJ (2019) Development and validation of a genetic L-System programming framework for topology optimization of multifunctional structures. Comput Struct 218:152–169. https://doi.org/10.1016/j.compstruc.2019.02.005
- 53.
Salajegheh F, Kamalodini M, Salajegheh E (2020) Momentum method powered by swarm approaches for topology optimization. Appl Soft Comput 90:106174. https://doi.org/10.1016/j.asoc.2020.106174
- 54.
Ram L, Sharma D (2017) Evolutionary and GPU computing for topology optimization of structures. Swarm and evolutionary computation 35:1–13. https://doi.org/10.1016/j.swevo.2016.08.004
- 55.
Jaafer AA, Al-Bazoon M, Dawood AO (2020) Structural topology design optimization using the binary bat algorithm. Appl Sci 10(4):1481. https://doi.org/10.3390/app10041481
- 56.
Aulig, N. (2017). Generic topology optimization based on local state features (Vol. 468). PhD Dissertation, Tu-Darmstadt, VDI Verlag
- 57.
Aulig, N., & Olhofer, M. (2016, July). Evolutionary computation for topology optimization of mechanical structures: An overview of representations. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 1948–1955). IEEE. Doi: https://doi.org/10.1109/CEC.2016.7744026.
- 58.
Guirguis D, Aulig N, Picelli R, Zhu B, Zhou Y, Vicente W, Saitou K (2019) Evolutionary black-box topology optimization: challenges and promises. IEEE Trans Evol Comput. https://doi.org/10.1109/tevc.2019.2954411
- 59.
Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PloS one. https://doi.org/10.1371/journal.pone.0145041
- 60.
Wang H, Cheng W, Du R et al (2020) Improved proportional topology optimization algorithm for solving minimum compliance problem. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02504-8
- 61.
Tovar, A. (2004). Bone remodeling as a hybrid cellular automaton optimization process [Doctoral dissertation].
- 62.
Afrousheh M, Marzbanrad J, Göhlich D (2019) Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm. Struct Multidiscip Optim 60(3):1021–1034. https://doi.org/10.1007/s00158-019-02254-2
- 63.
Zeng D, Duddeck F (2017) Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. Struct Multidiscip Optim 56(1):101–115. https://doi.org/10.1007/s00158-017-1650-3
- 64.
Bujny, M., Aulig, N., Olhofer, M., & Duddeck, F. (2016, June). Evolutionary level set method for crashworthiness topology optimization. In ECCOMAS Congress. Doi: https://doi.org/10.7712/100016.1814.11054.
- 65.
Bujny M, Aulig N, Olhofer M, Duddeck F (2016) Evolutionary crashworthiness topology optimization of thin-walled structures. ASMO UK, Munich, Germany
- 66.
Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int J Crashworthiness 23(4):395–416. https://doi.org/10.1080/13588265.2017.1331493
- 67.
Bujny, M., Aulig, N., Olhofer, M., & Duddeck, F. (2016, July). Hybrid evolutionary approach for level set topology optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 5092–5099). IEEE. DOI: https://doi.org/10.1109/CEC.2016.7748335.
- 68.
Rostami P, Marzbanrad J (2020) Hybrid algorithms for handling the numerical noise in topology optimization. Acta Mech Sin. https://doi.org/10.1007/s10409-020-00942-7
- 69.
Marzbanrad J, Varnousfaderani PR (2019) A new hybrid differential evolution with gradient search for level set topology optimization. ZANCO J Pure Appl Sci 31(s3):329–334. https://doi.org/10.21271/ZJPAS.31.s3.46
- 70.
Rostami P, Marzbanrad J (2020) Cooperative coevolutionary topology optimization using moving morphable components. Eng Optim. https://doi.org/10.1080/0305215X.2020.1759579
- 71.
Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2017) Kriging-guided level set method for crash topology optimization. GACM, Stuttgart, Germany
- 72.
Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2019) Kriging-assisted topology optimization of crash structures. Comput Methods Appl Mech Eng 348:730–752. https://doi.org/10.1016/j.cma.2019.02.002
- 73.
Raponi, E., Bujny, M., Olhofer, M., Boria, S., & Duddeck, F. (2019). Hybrid Kriging-assisted Level Set Method for Structural Topology Optimization. Doi: https://doi.org/10.5220/0008067800700081
- 74.
Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328
- 75.
Hansen N (2006) The CMA evolution strategy: a comparing review. In Towards a new evolutionary computation. Springer, Berlin, Heidelberg, pp 75–102
- 76.
Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015
- 77.
Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15. https://doi.org/10.1016/j.ins.2011.08.006
- 78.
Reynolds, R. G. (1994, February). An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (pp. 131–139). River Edge, NJ: World Scientific. Doi: https://doi.org/10.1142/9789814534116.
- 79.
Engelbrecht AP (2007) Computational intelligence: an introduction. John Wiley & Sons, Chichester
- 80.
Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090
- 81.
Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173. https://doi.org/10.1016/j.ejor.2006.06.046
- 82.
Geem, Z. W. (2007, September). Harmony search algorithm for solving sudoku. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (pp. 371–378). Springer, Berlin, Heidelberg. Doi: https://doi.org/10.1007/978-3-540-74819-9_46.
- 83.
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Book Luniver press
- 84.
Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004
- 85.
Kaveh A, Zolghadr A (2014) Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints. Adv Eng Softw 76:9–30. https://doi.org/10.1016/j.advengsoft.2014.05.012
Funding
This research is not supported by any institute of grant.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rostami, P., Marzbanrad, J. Identification of Optimal Topologies for Continuum Structures Using Metaheuristics: A Comparative Study. Arch Computat Methods Eng (2021). https://doi.org/10.1007/s11831-021-09546-1
Received:
Accepted:
Published: