Single Image Defogging using Deep Learning Techniques: Past, Present and Future

Abstract

Image dehazing play a vital role in several applications related to computer vision. The prime motive of this paper is to provide the overview of the existing deep learning algorithms associated with image defogging. In beginning, the main issues preset in the existing single image technique based on physical models are discussed. Thereafter, the basic concept of atmospheric scattering model and deep learning are discussed. The existing deep learning approaches based on single image defogging are decomposed into 3 broad categories namely Convolution neural network, Recurrent neural network, and Generative adversarial network with their pro and cons are discussed. The synthesised and real datasets used in defogging techniques are discussed with their applications. It also describes the various challenges and issues in the existing image dehazing techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Anwar M, Khosla A (2017) Vision enhancement through single image fog removal. Eng Sci Technol Int J 20:1075

    Google Scholar 

  2. 2.

    Singh D, Chahar V (2017) Comprehensive survey on haze removal techniques. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-5321-6

    Article  Google Scholar 

  3. 3.

    Ning X, Weijun L, Li D, Liping Z, Shi Y (2015) A image fog removal method based on human visual property. pp 178–183

  4. 4.

    Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, pp I–I

  5. 5.

    Chengtao C, Qiuyu Z, Yanhua L (2015) A survey of image dehazing approaches. In: The 27th Chinese Control and Decision Conference (2015 CCDC), pp 3964–3969

  6. 6.

    Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Autom Sin 4(3):410–436

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hautière N, Tarel JP, Lavenant J, Aubert D (2006) Automatic fog detection and estimation of visibility distance through use of an onboard camera. Mach Vis Appl 17:8–20

    Article  Google Scholar 

  8. 8.

    Li J, Li G, Fan H (2018) Image dehazing using residual-based deep cnn. IEEE Access 6:26831–26842

    Article  Google Scholar 

  9. 9.

    Voicu LI, Myler HR, Weeks AR (1997) Practical considerations on color image enhancement using homomorphic filtering. J Electron Imaging 6(1):108–113

    Article  Google Scholar 

  10. 10.

    Farge M (1992) Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24(1):395–458

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, ter Haar Romeny B, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368. https://doi.org/10.1016/S0734-189X(87)80186-X

  12. 12.

    Xie B, Guo F, Cai Z (2010) Improved single image dehazing using dark channel prior and multi-scale retinex. In: 2010 International Conference on Intelligent System Design and Engineering Application, vol 1, pp 848–851

  13. 13.

    Ali MM, Rahman MAU, Hajera S (2017) A comparative study of various image dehazing techniques. In: 2017 International Conference on Energy. Communication, Data Analytics and Soft Computing (ICECDS), pp 3622–3628

  14. 14.

    Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282

    Article  Google Scholar 

  15. 15.

    McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles

  16. 16.

    Tan RT (2008) Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8

  17. 17.

    He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  18. 18.

    Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intelli 25(6):713–724

    Article  Google Scholar 

  19. 19.

    Koschmeider H (1924) Therie der horizontalen sichtweite. Beitr Phys, Freien Atmosph, p 12

  20. 20.

    Hussain F, Jeong J (2016) Visibility enhancement of scene images degraded by foggy weather conditions with deep neural networks. J Sens 2016:1–9

    Google Scholar 

  21. 21.

    Dargan S, Kumar M, Ayyagari MR, Kumar G (2019) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Computat Methods Eng 27:1071–1092

  22. 22.

    Dhieb T, Ouarda W, Boubaker H, Alimi AM (2016) Deep neural network for online writer identification using beta-elliptic model. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp 1863–1870

  23. 23.

    Gurjar N, Sudholt S, Fink GA (2018) Learning deep representations for word spotting under weak supervision. In: 2018 13th IAPR international workshop on document analysis systems (DAS), pp 7–12

  24. 24.

    Li C, Guo J, Porikli F, Fu H, Pang Y (2018) A cascaded convolutional neural network for single image dehazing. IEEE Access 6:24877–24887

    Article  Google Scholar 

  25. 25.

    Song Y, Li J, Wang X, Chen X (2018) Single image dehazing using ranking convolutional neural network. IEEE Trans Multimed 20(6):1548–1560

    Article  Google Scholar 

  26. 26.

    Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Yeh CH, Huang CH, Kang LW (2018) Single image dehazing via deep learning-based image restoration pp 1609–1615

  28. 28.

    Wang R, You Y, Zhang Y, Zhou W, Liu J (2018) Ship detection in foggy remote sensing image via scene classification r-cnn. In: 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp 81–85

  29. 29.

    Ling Z, Fan G, Wang Y, Lu X (2016) Learning deep transmission network for single image dehazing 2296–2300

  30. 30.

    Ren W, Liu S, Zhang H, Pan J, Cao X, Yang MH (2016) Single image dehazing via multi-scale convolutional neural networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision: ECCV 2016. Springer, Cham, pp 154–169

    Google Scholar 

  31. 31.

    Zhang S, He F, Ren W, Yao J (2018) Joint learning of image detail and transmission map for single image dehazing. Vis Comput 36:305

    Article  Google Scholar 

  32. 32.

    Dudhane A, Murala S (2018) C2msnet: a novel approach for single image haze removal. CoRR. http://arxiv.org/abs/1801.08406

  33. 33.

    Kim G, Ha S, Kwon J (2018) Adaptive patch based convolutional neural network for robust dehazing. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp 2845–2849

  34. 34.

    Wang A, Wang W, Liu J, Gu N (2018) Aipnet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans Image Process 28:381

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Zhao X, Wang K, Li Y, Li J (2017) Deep fully convolutional regression networks for single image haze removal. In: 2017 IEEE Vis Commun Image Process (VCIP), 1–4

  36. 36.

    Zhang S, He F, Yao J (2018) Single image dehazing using deep convolution neural networks. In: Zeng B, Huang Q, El Saddik A, Li H, Jiang S, Fan X (eds) Advances in Multimedia Information Processing - PCM 2017. Springer, Cham, pp 128–137

    Google Scholar 

  37. 37.

    Luan Z, Shang Y, Zhou X, Shao Z, Guo G, Liu X (2017) Fast single image dehazing based on a regression model. Neurocomputing 245:10–22. https://doi.org/10.1016/j.neucom.2017.03.024

  38. 38.

    Chen D, He M, Fan Q, Liao J, Zhang L, Hou D, Yuan L, Hua G (2019) Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp 1375–1383

  39. 39.

    Santra S, Mondal R, Chanda B (2018) Learning a patch quality comparator for single image dehazing. IEEE Trans Image Process 27(9):4598–4607

    MathSciNet  Article  Google Scholar 

  40. 40.

    Huang Y, Wang Y, Su Z (2018) Single image dehazing via a joint deep modeling. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp 2840–2844

  41. 41.

    Zhang Y, Ding L, Sharma G (2017) Hazerd: An outdoor scene dataset and benchmark for single image dehazing. In: 2017 IEEE International Conference on Image Processing (ICIP), pp 3205–3209

  42. 42.

    Ancuti CO, Ancuti C, Sbert M. Timofte R (2019) Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. In: IEEE International Conference on Image Processing (ICIP), IEEE ICIP 2019

  43. 43.

    Jiang X, Sun J, Li C, Ding H (2018) Video image defogging recognition based on recurrent neural network. IEEE Trans Ind Inf 14(7):3281–3288

    Article  Google Scholar 

  44. 44.

    You Y, Lu C, Wang W, Tang C (2019) Relative cnn-rnn: learning relative atmospheric visibility from images. IEEE Trans Image Process 28(1):45–55

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Zhang J, Pan J, Ren J, Song Y, Bao L, Lau RWH, Yang M (2018) Dynamic scene deblurring using spatially variant recurrent neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 2521–2529

  46. 46.

    Liu K, He L, Ma S, Gao S, Bi D (2018) A sensor image dehazing algorithm based on feature learning. Sensors 18:2606

    Article  Google Scholar 

  47. 47.

    Xiao J, Zhou J, Lei J, Xu C, Sui H (2020) Image hazing algorithm based on generative adversarial networks. IEEE Access 8:15883–15894

    Article  Google Scholar 

  48. 48.

    Li R, Pan J, Li Z, Tang J (2018) Single image dehazing via conditional generative adversarial network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8202–8211

  49. 49.

    Liu W, Hou X, Duan J, Qiu G (2019) End-to-end single image fog removal using enhanced cycle consistent adversarial networks. CoRR arXiv:1902.01374

  50. 50.

    Zhu H, Peng X, Chandrasekhar V, Li L, Lim JH (2018) Dehazegan: When image dehazing meets differential programming. pp 1234–1240

  51. 51.

    Huang L, Yin J, Chen B, Ye S (2019) Towards unsupervised single image dehazing with deep learning. In: 2019 IEEE International Conference on Image Processing (ICIP), pp 2741–2745

  52. 52.

    Kuybeda Oleg (Portland, O.U.: Scene-based nonuniformity correction using a convolutional recurrent neural network (2019)

  53. 53.

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27. Curran Associates Inc, New York, pp 2672–2680

    Google Scholar 

  54. 54.

    Isola P, Zhu JY, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

  55. 55.

    Yang X, Xu Z, Luo J (2018) Towards perceptual image dehazing by physics-based disentanglement and adversarial training. Proc AAAI Conf Artif Intell 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/12317

  56. 56.

    Swami K, Das SK (2018) Candy: Conditional adversarial networks based end-to-end system for single image haze removal. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp 3061–3067

  57. 57.

    Li Z, Zhang J, Fang Z, Huang B, Jiang X, Gao Y, Hwang JN (2019) Single image snow removal via composition generative adversarial networks. IEEE Access PP:1–1

  58. 58.

    Liu Y, Jaw D, Huang S, Hwang J (2018) Desnownet: context-aware deep network for snow removal. IEEE Trans Image Process 27(6):3064–3073

    MathSciNet  Article  Google Scholar 

  59. 59.

    Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional generative models. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28. Curran Associates Inc, New York, pp 3483–3491

    Google Scholar 

  60. 60.

    Yeh R, Chen C, Lim T, Schwing A, Hasegawa-Johnson M, Do M (2017) Semantic image inpainting with deep generative models. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 6882–6890. https://doi.org/10.1109/CVPR.2017.728

  61. 61.

    Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision: ECCV 2016. Springer, Cham, pp 694–711

    Google Scholar 

  62. 62.

    Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  63. 63.

    Engin D, Genc A, Ekenel H (2018) Cycle-dehaze: enhanced cyclegan for single image dehazing 938–9388. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). https://doi.org/10.1109/CVPRW.2018.00127

  64. 64.

    Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from rgbd images. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C (eds) Computer Vision: ECCV 2012. Springer, Berlin, Heidelberg, pp 746–760

    Google Scholar 

  65. 65.

    Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z (2019) Benchmarking single-image dehazing and beyond. IEEE Trans Image Process 28(1):492–505

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Li W, Saeedi S, McCormac J, Clark R, Tzoumanikas D, Ye Q, Huang Y, Tang R, Leutenegger S (2018) Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. CoRR abs/1809.00716. arXiv:1809.00716

  67. 67.

    Deng J, Dong W, Socher R, Li L, Li, Kai, Fei-Fei, Li (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255

  68. 68.

    Ancuti C, Ancuti CO, De Vleeschouwer C (2016) D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE International Conference on Image Processing (ICIP), pp 2226–2230

  69. 69.

    Saxena A, Sun M, Ng AY (2009) Make3d: learning 3d scene structure from a single still image. IEEE Trans Pattern Anal Mach Intell 31(5):824–840

    Article  Google Scholar 

  70. 70.

    Fattal R (2015) Dehazing using color-lines 34(1):13. https://doi.org/10.1145/2651362

  71. 71.

    Li Y, Liu MY, Li X, Yang MH, Kautz J (2018) A closed-form solution to photorealistic image stylization. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision: ECCV 2018. Springer International Publishing, Cham, pp 468–483

    Google Scholar 

  72. 72.

    Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 105–114

  73. 73.

    El Khoury J, Thomas JB, Mansouri A (2016) A color image database for haze model and dehazing methods evaluation. In: Mansouri A, Nouboud F, Chalifour A, Mammass D, Meunier J, Elmoataz A (eds) Image and signal processing. ICISP 2016 Lecture notes in computer science, vol 9680. Springer, Cham. https://doi.org/10.1007/978-3-319-33618-3_12

  74. 74.

    Tarel J, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell Transp Syst Mag 4(2):6–20

    Article  Google Scholar 

  75. 75.

    Scharstein D, Hirschmüller H, Kitajima Y, Krathwohl G, Nešić N, Wang X, Westling P (2014) High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang X, Hornegger J, Koch R (eds) Pattern Recognition. Springer, Cham, pp 31–42

    Google Scholar 

  76. 76.

    Ancuti CO, Ancuti C, Timofte R, De Vleeschouwer C (2018) O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 867–8678

  77. 77.

    Du Y, Li X (2018) Recursive deep residual learning for single image dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 843–8437

  78. 78.

    Amintoosi M, Fathy M, Mozayani N (2011) Video enhancement through image registration based on structural similarity. Imaging Sci J 59(4):238–250

    Article  Google Scholar 

  79. 79.

    Singh D, Garg D, Pannu HS (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114

    Article  Google Scholar 

  80. 80.

    Singh D, Kumar V (2017) Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci J 65(5):282–292. https://doi.org/10.1080/13682199.2017.1329792.1329792

    Article  Google Scholar 

  81. 81.

    Singh D, Kumar V (2017) Modified gain intervention filter based dehazing technique. J Modern Opt 64(20):2165–2178

    Article  Google Scholar 

  82. 82.

    Valls JM, Aler R, Fernández O (2005) Using a mahalanobis-like distance to train radial basis neural networks. In: Cabestany J, Prieto A, Sandoval F (eds) Computational Intelligence and Bioinspired Systems. Springer, Berlin, Heidelberg, pp 257–263

    Google Scholar 

  83. 83.

    Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, USA

    Google Scholar 

  84. 84.

    Hautière N, Tarel JP, Didier A, Dumont E (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol 27:87

    MathSciNet  MATH  Article  Google Scholar 

  85. 85.

    Zhang R, Yao J, Zhang K, Feng C, Zhang J (2016) S-cnn-based ship detection from high-resolution remote sensing images. ISPRS - Int Arch Photogramm Remote Sens Spatial Info Sci XLI–B7:423–430. https://doi.org/10.5194/isprs-archives-XLI-B7-423-2016

  86. 86.

    Liu Y, Cui HY, Kuang Z, Li G (2017) Ship detection and classification on optical remote sensing images using deep learning. ITM Web Conf. https://doi.org/10.1051/itmconf/20171205012

  87. 87.

    Hu H, Guo Q, Zheng J, Wang H, Li B (2019) Single image defogging based on illumination decomposition for visual maritime surveillance. IEEE Trans Image Process 28(6):2882–2897

    MathSciNet  MATH  Article  Google Scholar 

  88. 88.

    Singh A, Sood H (2017) A review on influence of fog on road crash. Int J Eng Res 6:671–676. https://doi.org/10.17577/IJERTV6IS060313

  89. 89.

    Singh D, Kumar V (2018) Defogging of road images using gain coefficient-based trilateral filter. J Electron Imaging 27:013004

    Article  Google Scholar 

  90. 90.

    Colomb M, Khaled H, André P, Boreux J, Lacôte P, Dufour J (2008) An innovative artificial fog production device improved in the European project fog. Atmos Res Atmos Res 87:242–251

    Article  Google Scholar 

  91. 91.

    Sharma S (2016) Road traffic accidents in india. Int J Adv Integr Med Sci 1:57–64

    Article  Google Scholar 

  92. 92.

    Huang S, Chen B, Cheng Y (2014) An efficient visibility enhancement algorithm for road scenes captured by intelligent transportation systems. IEEE Trans Intell Transp Syst 15(5):2321–2332

    Article  Google Scholar 

  93. 93.

    Robinson PJ (1989) The influence of weather on flight operations at the atlanta hartsfield international airport. Weather Forecast 4(4):461–468

    Article  Google Scholar 

  94. 94.

    Gupta AK, Katiyar S, Kumar N (2013) Railway track finding system with rfid application. Int J Comput Appl 83:24–30

    Google Scholar 

  95. 95.

    Mathur V, Singh K, Chawhan M (2012) Zero-visibility navigation for the indian railways. IJCA Proc Nat Conf Adv Electron Telecomm Eng 28–31

  96. 96.

    Conca A, Ridella C, Sapori E (2016) A risk assessment for road transportation of dangerous goods: a routing solution. Transp Res Proc 14: 2890–2899. Trans Res Arena 14:2890–2899. https://doi.org/10.1016/j.trpro.2016.05.407

  97. 97.

    Fang K, Ke GY, Verma M (2017) A routing and scheduling approach to rail transportation of hazardous materials with demand due dates. Eur J Oper Res 261(1):154–168. https://doi.org/10.1016/j.ejor.2017.01.045

  98. 98.

    Pellegrini P, Rodriguez J (2013) Single European sky and single European railway area: a system level analysis of air and rail transportation. Transp Res Part A Policy Pract 57:64–86

    Article  Google Scholar 

  99. 99.

    Petres C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341

    Article  Google Scholar 

  100. 100.

    Chen CLP, Zhou J, Zhao W (2012) A real-time vehicle navigation algorithm in sensor network environments. IEEE Trans Intell Trans Syst 13(4):1657–1666

    Article  Google Scholar 

  101. 101.

    Millán P, Orihuela L, Jurado I, Rubio FR (2014) Formation control of autonomous underwater vehicles subject to communication delays. IEEE Trans Control Syst Technol 22(2):770–777

    Article  Google Scholar 

  102. 102.

    Kim J, Joe H, Yu S, Lee JS, Kim M (2016) Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans Ind Electron 63(2):1052–1061

    Article  Google Scholar 

  103. 103.

    Peng Z, Wang J, Han Q (2019) Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans Ind Electron 66(11):8724–8732

    Article  Google Scholar 

  104. 104.

    Cui R, Yang C, Li Y, Sharma S (2017) Adaptive neural network control of auvs with control input nonlinearities using reinforcement learning. IEEE Trans Syst Man Cybern Syst 47(6):1019–1029

    Article  Google Scholar 

  105. 105.

    Cho S, Jung H, Lee H, Rim H, Lee SK (2016) Real-time underwater object detection based on dc resistivity method. IEEE Trans Geosci Remote Sens 54(11):6833–6842

    Article  Google Scholar 

  106. 106.

    Mohcine B, Nsiri B (2016) Underwater image processing method for fish localization and detection in submarine environment. J Vis Commun Image Represent 39:226

    Article  Google Scholar 

  107. 107.

    Han M, Lyu Z, Qiu T, Xu M (2020) A review on intelligence dehazing and color restoration for underwater images. IEEE Trans Syst Man Cybern Syst 50(5):1820–1832

    Article  Google Scholar 

  108. 108.

    Williams DP (2015) Fast unsupervised seafloor characterization in sonar imagery using lacunarity. IEEE Trans Geosci Remote Sens 53(11):6022–6034

    Article  Google Scholar 

  109. 109.

    Kennedy J, Wilson J (2017) Liabilities and responsibilities: Ocean transportation intermediaries (otis) and the distribution of counterfeit goods. Marit Econ Logist 19:1–6

    Article  Google Scholar 

  110. 110.

    Wen X, Yang X (2009) Haze removal from the visible bands of cbers remote sensing data. In: 2009 International Conference on Industrial and Information Systems, pp 118–121

  111. 111.

    Zheng Y, Li H, Gu H, Feng H (2010) Research on the haze removal method and parallel implementation for hj -1 satellite data. In: 2010 International Conference on Multimedia Technology, pp 1–4

  112. 112.

    Tang X, Jiao L (2017) Fusion similarity-based reranking for sar image retrieval. IEEE Geosci Remote Sens Lett 14(2):242–246

    Article  Google Scholar 

  113. 113.

    Singh D, Kumar V (2018) Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Comput Visi 12(2):208–219

    Article  Google Scholar 

  114. 114.

    Ansari A, Danyali H, Helfroush M (2016) Hyperspectral remote sensing image restoration using fusion with multispectral images by em algorithm. IET Signal Process 11:95

    Article  Google Scholar 

  115. 115.

    Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret JY, Chen M, Godsill S (2016) Multi-band image fusion based on spectral unmixing. IEEE Trans Geosci Remote Sens 54:7236

    Article  Google Scholar 

  116. 116.

    Li Y, Zhang Y, Xu X, He L, Serikawa S, Kim H (2017) Dust removal from high turbid underwater images using convolutional neural networks. Optics Laser Technol 110:2

    Article  Google Scholar 

  117. 117.

    Palvanov A, Cho Y (2019) Visnet: deep convolutional neural networks for forecasting atmospheric visibility. Sensors 19:1343

    Article  Google Scholar 

  118. 118.

    Kumar R, Kaushik BK, Balasubramanian R (2017) FPGA implementation of image dehazing algorithm for real time applications. In: Tescher AG (ed) Applications of digital image processing XL, vol 10396. International Society for Optics and Photonics, Bellingham, pp 639–645

    Google Scholar 

  119. 119.

    Wang JG, Tai SC, Lin CJ (2015) Image haze removal using a hybrid of fuzzy inference system and weighted estimation. J Electron Imaging 24:033027

    Article  Google Scholar 

  120. 120.

    Beck A, Henneberger J, Schöpfer S, Lohmann U (2016) Hologondel: in-situ cloud observations on a cable car in the swiss alps using a holographic imager. Atmos Meas Tech Discuss 10(2):459–476. https://doi.org/10.5194/amt-10-459-2017

  121. 121.

    Jia Z, Wang H, Caballero R, Xiong Z, Zhao J, Finn A (2011) A two-step approach to see-through bad weather for surveillance video quality enhancement. In: 2011 IEEE International Conference on Robotics and Automation, pp 5309–5314

  122. 122.

    Tang K, Yang J, Wang J (2014) Investigating haze-relevant features in a learning framework for image dehazing. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp 2995–3002

  123. 123.

    Li B, Peng X, Wang Z, Xu J, Feng D (2018) End-to-end united video dehazing and detection. In: AAAI

  124. 124.

    Luan Z, Zeng H, Shang Y, Shao Z, Ding H (2018) Fast video dehazing using per-pixel minimum adjustment. Math Probl Eng 2018:1–8

    Article  Google Scholar 

  125. 125.

    Huang S (2011) An advanced motion detection algorithm with video quality analysis for video surveillance systems. IEEE Trans Circuits Syst Video Technol 21(1):1–14

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Council of Scientific and Industrial Research (CSIR), India. This research is under grant with File No. 22(0801)/19/EMR-II.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neeraj Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kumar, V. & Singla, S.K. Single Image Defogging using Deep Learning Techniques: Past, Present and Future. Arch Computat Methods Eng (2021). https://doi.org/10.1007/s11831-021-09541-6

Download citation