An Overview of High-Order Implicit Algorithms for First-/Second-Order Systems and Novel Explicit Algorithm Designs for First-Order System Representations

Abstract

In this paper, we are interested in high-order algorithms for time discretization and focus upon the high-order implicit/explicit algorithm designs. Five high-order unconditionally stable implicit algorithms, derived by the time continuous Galerkin method, weighting parameter method, collocation method, differential quadrature method, and the modified time-weighted residual method, in first-/second-order transient systems are taken into consideration. The present overview and contributions encompass: (1) The pros and cons of various methodologies for the design of high-order algorithms are first demonstrated. Generally, p unknown variables leads to the optimized \((2p-1)\)th-order accurate algorithms with controllable numerical dissipation, and/or 2pth-order accurate algorithms without controllable numerical dissipation. (2) Although it is claimed that the TCG method can achieve 2pth-order accuracy with controllable numerical dissipation, it will be shown in this paper that the conclusion was arrived via an inconsistent analysis for the accuracy and the controllable numerical dissipation. (3) Given the rapid increase on the computational cost for high-order algorithms, the iterative predictor/multi-corrector technique is applied to show a novel design for the high-order explicit algorithms derived from the high-order implicit algorithms for the first-order transient systems. Coupled with the high-order Legendre SEM (likewise isogeometric analysis, DG methods, p-version FEM, etc., can be employed) for the spatial discretization, this newly proposed explicit numerical framework can achieve and preserve high-order accuracy in both space and time. In comparison to the famous explicit Runge-Kutta method, these newly designed explicit algorithms have better solution accuracy with comparable stability region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Masuri SU, Sellier M, Zhou X, Tamma KK (2011) Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation. Int J Numer Methods Eng 88(13):1411–1448

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Xue T, Zhang X, Tamma KK (2018) Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration. Int J Heat Mass Transf 116:889–896

    Article  Google Scholar 

  3. 3.

    Xue T, Zhang X, Tamma KK (2018) A two-field state-based peridynamic theory for thermal contact problems. J Comput Phys 374:1180–1195

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Maxam D, Deokar R, Tamma K (2019) A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems. J Therm Stresses 42(1):163–184

    Article  Google Scholar 

  5. 5.

    Deokar R, Maxam D, Tamma K (2018) A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: adaptive time stepping in second-order dynamical systems. Comput Methods Appl Mech Eng 334:414–439

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Masuri S, Tamma K, Zhou X, Sellier M (2012) GS4-1 computational framework for heat transfer problems: part 1-linear cases with illustration to thermal shock problem. Numer Heat Transf Part B Fundam 62(2–3):141–156

    Article  Google Scholar 

  7. 7.

    Masuri S, Tamma KK, Zhou X, Sellier M (2012) GS4-1 computational framework for heat transfer problems: part 2-extension to nonlinear cases with illustration to radiation heat transfer problem. Numer Heat Transf Part B Fundam 62(2–3):157–180

    Article  Google Scholar 

  8. 8.

    Wang Y, Xue T, Tamma KK, Maxam D, Qin G (2021) An accurate and simple universal a posteriori error estimator for GS4-1 framework: Adaptive time stepping in first-order transient systems. Comput Methods Appl Mech Eng 374:113604

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dahlquist G (1963) A special stability problem for linear multistep methods. BIT Numer Math 3(1):27–43

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Tamma K, Zhou X, Sha D (2000) The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications. Arch Comput Methods Eng 7(2):67–290

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Newmark M (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Google Scholar 

  12. 12.

    Wilson EL (1986) A computer program for the dynamic stress analysis of underground structures. Technical report, California Univ Berkeley Structural Engineering Lab

  13. 13.

    Park KC (1975) An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. J Appl Mech 42:464–470

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292

    Article  Google Scholar 

  15. 15.

    Wood WL, Bossak M, Zienkiewicz OC (1980) An \(\alpha\) modification of Newmark’s method. Int J Numer Methods Eng 15(10):1562–1566

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Tamma KK, Zhou X, Sha D (2001) A theory of development and design of generalized integration operators for computational structural dynamics. Int J Numer Methods Eng 50(7):1619–1664

    MATH  Article  Google Scholar 

  17. 17.

    Zhou X, Tamma K (2004) Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Int J Numer Methods Eng 59(5):597–668

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Zhou X, Tamma KK (2006) Algorithms by design with illustrations to solid and structural mechanics/dynamics. Int J Numer Methods Eng 66(11):1738–1790

    MATH  Article  Google Scholar 

  19. 19.

    Shimada M, Masuri S, Tamma KK (2015) A novel design of an isochronous integration [iintegration] framework for first/second order multidisciplinary transient systems. Int J Numer Methods Eng 102(3–4):867–891

    MATH  Article  Google Scholar 

  20. 20.

    Tamma KK, Har J, Zhou X, Shimada M, Hoitink A (2011) An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics–a unified approach. Arch Comput Methods Eng 18(2):119–283

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Bank RE, Coughran WM, Fichtner W, Grosse EH, Rose DJ, Smith RK (1985) Transient simulation of silicon devices and circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 4(4):436–451

    Article  Google Scholar 

  22. 22.

    Noh G, Bathe K-J (2019) The Bathe time integration method with controllable spectral radius: the \(\rho _\infty\)-Bathe method. Comput Struct 212:299–310

    Article  Google Scholar 

  23. 23.

    Bathe K-J (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7–8):437–445

    MathSciNet  Article  Google Scholar 

  24. 24.

    Malakiyeh MM, Shojaee S, Bathe K-J (2019) The Bathe time integration method revisited for prescribing desired numerical dissipation. Comput Struct 212:289–298

    Article  Google Scholar 

  25. 25.

    Muhammad IBM, Klaus-Jürgen B (2005) On direct time integration in large deformation dynamic analysis. In: 3rd MIT conference on computational fluid and solid mechanics, pp 1044–1047

  26. 26.

    Kim W, Choi SY (2018) An improved implicit time integration algorithm: the generalized composite time integration algorithm. Comput Struct 196:341–354

    Article  Google Scholar 

  27. 27.

    Wen WB, Wei K, Lei HS, Duan SY, Fang DN (2017) A novel sub-step composite implicit time integration scheme for structural dynamics. Comput Struct 182:176–186

    Article  Google Scholar 

  28. 28.

    Butcher JC, Wanner G (1996) Runge-Kutta methods: some historical notes. Appl Numer Math 22(1–3):113–151

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Fung TC (1999) Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 1–first-order equations. Int J Numer Methods Eng 45(8):941–970

    MATH  Article  Google Scholar 

  30. 30.

    Fung TC (1999) Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2–second-order equations. Int J Numer Methods Eng 45(8):971–1006

    MATH  Article  Google Scholar 

  31. 31.

    Fung TC (2000) Unconditionally stable higher-order accurate collocation time-step integration algorithms for first-order equations. Comput Methods Appl Mech Eng 190(13–14):1651–1662

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Fung TC (2001) Unconditionally stable collocation algorithms for second order initial value problems. J Sound Vib 247(2):343–365

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Fung TC (2001) Solving initial value problems by differential quadrature method-Part 1: first-order equations. Int J Numer Methods Eng 50(6):1411–1427

    MATH  Article  Google Scholar 

  34. 34.

    Fung TC (2001) Solving initial value problems by differential quadrature method-Part 2: second-and higher-order equations. Int J Numer Methods Eng 50(6):1429–1454

    Article  Google Scholar 

  35. 35.

    Kim W, Reddy JN (2017) A new family of higher-order time integration algorithms for the analysis of structural dynamics. J Appl Mech 84(7):071008

  36. 36.

    Kim W, Lee JH (2019) A comparative study of two families of higher-order accurate time integration algorithms. Int J Comput Methods 17:1950048

  37. 37.

    Idesman V (2007) A new high-order accurate continuous Galerkin method for linear elastodynamics problems. Comput Mech 40(2):261–279

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Idesman A (2011) A new exact, closed-form a priori global error estimator for second-and higher-order time-integration methods for linear elastodynamics. Int J Numer Methods Eng 88(10):1066–1084

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Idesman A, Samajder H, Aulisa E, Seshaiyer P (2009) Benchmark problems for wave propagation in elastic materials. Comput Mech 43(6):797–814

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Kujawski J, Wiberg N-E (1987) Least-squares schemes for time integration of thermal problems. Int J Numer Methods Eng 24(1):159–175

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Kujawski J, Gallagher RH (1989) A generalized least-squares family of algorithms for transient dynamic analysis. Earthq Eng Struct Dyn 18(4):539–550

    Article  Google Scholar 

  42. 42.

    Fung TC (1999) Higher-order accurate least-squares methods for first-order initial value problems. Int J Numer Methods Eng 45(1):77–99

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Wang Y, Maxam D, Tamma KK, Qin G (2020) Design/analysis of gegs4-1 time integration framework with improved stability and solution accuracy for first-order transient systems. J Comput Phys 422:109763

    MathSciNet  Article  Google Scholar 

  44. 44.

    Williamson JH (1980) Low-storage runge-kutta schemes. J Comput Phys 35(1):48–56

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Ketcheson I (2008) Highly efficient strong stability-preserving runge-kutta methods with low-storage implementations. SIAM J Sci Comput 30(4):2113–2136

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Gottlieb S, Shu C-W (1998) Total variation diminishing runge-kutta schemes. Math Comput 67(221):73–85

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Butcher JC (2009) On fifth and sixth order explicit Runge-Kutta methods: order conditions and order barriers. Can Appl Math Q 17(3):433–445

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Sarafyan D (1972) Improved sixth-order Runge-Kutta formulas and approximate continuous solution of ordinary differential equations. J Math Anal Appl 40(2):436–445

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Luther HA (1968) An explicit sixth-order Runge-Kutta formula. Math Comput 22(102):434–436

    MATH  Article  Google Scholar 

  50. 50.

    Curtis R (1970) An eighth order Runge-Kutta process with eleven function evaluations per step. Numer Math 16(3):268–277

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Chelmsford

  52. 52.

    Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe

  53. 53.

    Noh G, Bathe K-J (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  54. 54.

    Soares D Jr (2020) An enhanced explicit time-marching technique for wave propagation analysis considering adaptive time integrators. Comput Methods Appl Mech Eng 363:112882

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Kim W (2019) Higher-order explicit time integration methods for numerical analyses of structural dynamics. Latin Am J Solids Struct 16(6):e201

  56. 56.

    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Mineola

    Google Scholar 

  57. 57.

    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Google Scholar 

  58. 58.

    Hughes TJR, Liu WK (1978) Implicit–explicit finite elements in transient analysis: stability theory. J Appl Mech 45(2):371–374

    MATH  Article  Google Scholar 

  59. 59.

    Hughes TJR, Pister KS, Taylor RL (1979) Implicit–explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182

    MATH  Article  Google Scholar 

  60. 60.

    Miranda I, Ferencz RM, Hughes TJR (1989) An improved implicit–explicit time integration method for structural dynamics. Earthq Eng Struct Dyn 18(5):643–653

    Article  Google Scholar 

  61. 61.

    Idesman AV, Schmidt M, Sierakowski RL (2008) A new explicit predictor-multicorrector high-order accurate method for linear elastodynamics. J Sound Vib 310(1–2):217–229

    Article  Google Scholar 

  62. 62.

    Evans JA, Hiemstra RR, Hughes TJR, Reali A (2018) Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput Methods Appl Mech Eng 338:208–240

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Wang Y, Qin G (2018) An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation. Comput Fluids 174:122–134

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Wang Y, Qin G, Tamma KK, Geng Y (2019) Accurate solution for natural convection around single and tandem circular cylinders inside a square enclosure using sem. Numer Heat Transf Part A Appl 75(9):579–597

    Article  Google Scholar 

  65. 65.

    Pontaza JP, Reddy JN (2003) Spectral/hp least-squares finite element formulation for the Navier–Stokes equations. J Comput Phys 190(2):523–549

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Vallalaa VP, Sadr R, Reddy JN (2014) Higher order spectral/hp finite element models of the Navier–Stokes equations. Int J Comput Fluid Dyn 28(1–2):16–30

    MathSciNet  Article  Google Scholar 

  67. 67.

    Fung TC (2002) On the equivalence of the time domain differential quadrature method and the dissipative Runge-Kutta collocation method. Int J Numer Methods Eng 53(2):409–431

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Liao W (2008) An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl Math Comput 206(2):755–764

    MathSciNet  MATH  Google Scholar 

  69. 69.

    Tamma KK, Railkar SB (1988) A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer. Int J Numer Methods Eng 26(5):1087–1100

    MATH  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51776155). The author Yazhou Wang would like to thank the China Scholarship Council for the financial support (No. 201906280340). Acknowledgement is also due to Professor Tamma’s computational mechanics research lab at the University of Minnesota.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kumar Tamma or Guoliang Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tamma, K., Maxam, D. et al. An Overview of High-Order Implicit Algorithms for First-/Second-Order Systems and Novel Explicit Algorithm Designs for First-Order System Representations. Arch Computat Methods Eng (2021). https://doi.org/10.1007/s11831-021-09536-3

Download citation

Keywords

  • Transient systems
  • High-order accuracy
  • Unconditional stability
  • Controllable numerical dissipation
  • Predictor/multicorrector
  • Implicit and explicit algorithms