A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems

Abstract

Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Availability of data and materials

The test data, test problems’ details, and optimisation parameters settings can be found in https://github.com/Natee-Panagant/Comparative-study-of-truss-sizing-optimisation-problems-in-MATLAB/.

Code availability

All the implemented MATLAB codes are available in https://github.com/Natee-Panagant/Comparative-study-of-truss-sizing-optimisation-problems-in-MATLAB/.

References

  1. 1.

    Pholdee N, Bureerat S, Jaroenapibal P, Radpukdee T (2017) Many-objective optimisation of trusses through meta-heuristics. In: Advances in neural networks—ISNN 2017, Cham, pp 143–152. https://doi.org/10.1007/978-3-319-59072-1_18

  2. 2.

    Yildiz AR, Abderazek H, Mirjalili S (2019) A comparative study of recent non-traditional methods for mechanical design optimization. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09343-x

    Article  Google Scholar 

  3. 3.

    Xia L, Xia Q, Huang X, Xie YM (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng 25(2):437–478. https://doi.org/10.1007/s11831-016-9203-2

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Patel VK, Raja BD (2020) Comparative performance of recent advanced optimization algorithms for minimum energy requirement solutions in water pump switching network. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09429-x

    Article  Google Scholar 

  5. 5.

    Rao RV, Saroj A, Ocloń P, Taler J (2020) Design optimization of heat exchangers with advanced optimization techniques: a review. Arch Comput Methods Eng 27(2):517–548. https://doi.org/10.1007/s11831-019-09318-y

    Article  Google Scholar 

  6. 6.

    Greiner D, Periaux J, Emperador JM, Galván B, Winter G (2017) Game theory based evolutionary algorithms: a review with Nash applications in structural engineering optimization problems. Arch Comput Methods Eng 24(4):703–750. https://doi.org/10.1007/s11831-016-9187-y

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Tang Z, Hu X, Périaux J (2019) Multi-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithms. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09336-w

    Article  Google Scholar 

  8. 8.

    Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2020) Ant lion optimizer: a comprehensive survey of its variants and applications. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09420-6

    Article  Google Scholar 

  9. 9.

    Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23):2531–2538. https://doi.org/10.1016/j.compstruc.2011.08.010

    Article  Google Scholar 

  10. 10.

    Ohsaki M (1995) Genetic algorithm for topology optimization of trusses. Comput Struct 57(2):219–225. https://doi.org/10.1016/0045-7949(94)00617-C

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Hajela P, Lee E (1995) Genetic algorithms in truss topological optimization. Int J Solids Struct 32(22):3341–3357. https://doi.org/10.1016/0020-7683(94)00306-H

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Chen G-S, Bruno RJ, Salama M (1991) Optimal placement of active/passive members in truss structures using simulated annealing. AIAA J 29(8):1327–1334. https://doi.org/10.2514/3.10739

    Article  Google Scholar 

  13. 13.

    Schutte JF, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multidisc Optim 25(4):261–269. https://doi.org/10.1007/s00158-003-0316-5

    Article  Google Scholar 

  14. 14.

    Wu C-Y, Tseng K-Y (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidisc Optim 42(4):575–590. https://doi.org/10.1007/s00158-010-0507-9

    Article  Google Scholar 

  15. 15.

    Tejani GG, Savsani VJ, Patel VK, Bureerat S (2017) Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization. Adv Comput Des 2(4):313–331

    Google Scholar 

  16. 16.

    Sonmez M (2011) Artificial Bee Colony algorithm for optimization of truss structures. Appl Soft Comput 11(2):2406–2418. https://doi.org/10.1016/j.asoc.2010.09.003

    Article  Google Scholar 

  17. 17.

    Kaveh A, Ahmadi B (2014) Sizing, geometry and topology optimization of trusses using force method and supervised charged system search. Struct Eng Mech 50(3): 365–382

  18. 18.

    Lieu QX, Do DTT, Lee J (2018) An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints. Comput Struct 195:99–112. https://doi.org/10.1016/j.compstruc.2017.06.016

    Article  Google Scholar 

  19. 19.

    Kaveh A, Dadras A, Montazeran AH (2018) Chaotic enhanced colliding bodies algorithms for size optimization of truss structures. Acta Mech 229(7):2883–2907. https://doi.org/10.1007/s00707-018-2149-8

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Yancang L, Zhen Y (2019) Application of improved bat algorithm in truss optimization. KSCE J Civ Eng 23(6):2636–2643. https://doi.org/10.1007/s12205-019-2119-2

    Article  Google Scholar 

  21. 21.

    Gandomi AH, Talatahari S, Tadbiri F, Alavi AH (2013) Krill herd algorithm for optimum design of truss structures. Int J Bio-Inspired Comput 5(5):281–288. https://doi.org/10.1504/IJBIC.2013.057191

    Article  Google Scholar 

  22. 22.

    Kaveh A, Khayatazad M (2013) Ray optimization for size and shape optimization of truss structures. Comput Struct 117:82–94. https://doi.org/10.1016/j.compstruc.2012.12.010

    Article  Google Scholar 

  23. 23.

    Tejani GG, Pholdee N, Bureerat S, Prayogo D, Gandomi AH (2019) Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst Appl 125:425–441. https://doi.org/10.1016/j.eswa.2019.01.068

    Article  Google Scholar 

  24. 24.

    Tejani GG, Savsani VJ, Bureerat S, Patel VK, Savsani P (2019) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput 35(2):499–517. https://doi.org/10.1007/s00366-018-0612-8

    Article  Google Scholar 

  25. 25.

    Pholdee N, Bureerat S (2018) A comparative study of eighteen self-adaptive metaheuristic algorithms for truss sizing optimisation. KSCE J Civ Eng 22(8):2982–2993. https://doi.org/10.1007/s12205-017-0095-y

    Article  Google Scholar 

  26. 26.

    Greiner D, Hajela P (2012) Truss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulations. Struct Multidisc Optim 45(4):589–613. https://doi.org/10.1007/s00158-011-0709-9

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Techasen T, Wansasueb K, Panagant N, Pholdee N, Bureerat S (2019) Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms. Eng Compu 35(2):721–740. https://doi.org/10.1007/s00366-018-0629-z

    Article  Google Scholar 

  28. 28.

    Panagant N, Bureerat S, Tai K (2019) A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables. Struct Multidisc Optim 60(5):1937–1955. https://doi.org/10.1007/s00158-019-02302-x

    MathSciNet  Article  Google Scholar 

  29. 29.

    Pholdee N, Bureerat S (2012) Performance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradient. Comput Struct 106–107:115–124. https://doi.org/10.1016/j.compstruc.2012.04.015

    Article  Google Scholar 

  30. 30.

    Pholdee N, Bureerat S (2013) Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inf Sci 223:136–152. https://doi.org/10.1016/j.ins.2012.10.008

    MathSciNet  Article  Google Scholar 

  31. 31.

    Pholdee N, Bureerat S (2014) Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design. Eng Optim 46(8):1032–1051. https://doi.org/10.1080/0305215X.2013.823194

    MathSciNet  Article  Google Scholar 

  32. 32.

    Tejani GG, Pholdee N, Bureerat S, Prayogo D (2018) Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl-Based Syst 161:398–414. https://doi.org/10.1016/j.knosys.2018.08.005

    Article  Google Scholar 

  33. 33.

    Kumar S, Tejani GG, Pholdee N, Bureerat S (2020) Multi-objective modified heat transfer search for truss optimization. Eng Comput. https://doi.org/10.1007/s00366-020-01010-1

    Article  Google Scholar 

  34. 34.

    Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95. https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

  35. 35.

    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    MathSciNet  Article  Google Scholar 

  36. 36.

    Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820. https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  37. 37.

    Mirjalili S, Saremi S, Mirjalili SM, dos Coelho LS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  38. 38.

    Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl-Based Syst 134:50–71. https://doi.org/10.1016/j.knosys.2017.07.018

    Article  Google Scholar 

  39. 39.

    Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298. https://doi.org/10.1016/j.asoc.2014.10.042

    Article  Google Scholar 

  40. 40.

    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  41. 41.

    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  42. 42.

    Robič T, Filipič B (2005) DEMO: differential evolution for multiobjective optimization. In: Evolutionary multi-criterion optimization, pp 520–533

  43. 43.

    Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  44. 44.

    Aittokoski T, Miettinen K (2010) Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA. Optim Methods Softw 25(6):841–858

    MathSciNet  Article  Google Scholar 

  45. 45.

    Veldhuizen DAV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147. https://doi.org/10.1162/106365600568158

    Article  Google Scholar 

  46. 46.

    Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary multi-criterion optimization, Berlin, pp 505–519. https://doi.org/10.1007/978-3-540-31880-4_35

Download references

Funding

Sujin, Natee, and Nantiwat have financial support from the Thailand Research Fund (RTA6180010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sujin Bureerat.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panagant, N., Pholdee, N., Bureerat, S. et al. A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems. Arch Computat Methods Eng (2021). https://doi.org/10.1007/s11831-021-09531-8

Download citation