Abstract
In today’s era of new advancements, diagnosing a pathology at an early stage has given rise to the development of automated diagnostic systems. Knee Osteoarthritis (KOA) being among one of the most painful joint disorders is the root cause for disability, particularly in elderly population. Gait based recognition of KOA is a prominent area that requires deliberations from the end of researchers, academicians and scientists to develop more automated systems that not only offer reliability and accuracy but are also affordable for common man. This article aims to provide an in-depth investigation of efforts directed towards vision-based, sensor-based and hybrid KOA identification. The study is based on the historical data gathered and background obtained viz-a-viz clinical gait analysis. An extensive survey of KOA gait acquisition modalities and feature representation approaches for the purpose of critically examining them are also presented. The study surveys the statistical metrics used for evaluating KOA, considering relevant articles. Based on the survey, this article aims to provide an up-to-date review of machine learning techniques for classification of KOA and healthy subjects. Furthermore, this article also identifies open research challenges existing in the literature that could be explored further for providing more effective KOA analysis. Finally, this article presents the future perspectives and provides an outline of the proposed work for efficient KOA diagnosis based on vision-based gait.
This is a preview of subscription content, access via your institution.



















References
- 1.
Gupta D, Sundaram S, Khanna A, Hassanien AE, de Albuquerque VHC (2018) Improved diagnosis of Parkinson’s disease based on optimized Crow Search Algorithm. Comput Electr Eng 68:412–424. https://doi.org/10.1016/j.compeleceng.2018.04.014
- 2.
Wang Y, Wang A-N, Ai Q, Sun H-J (2017) An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease. Biomed Signal Process Control 38:400–410. https://doi.org/10.1016/j.bspc.2017.06.015
- 3.
Lahmiri S (2017) Parkinson’s disease detection based on dysphonia measurements. Phys A 471:98–105. https://doi.org/10.1016/j.physa.2016.12.009
- 4.
Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M (2018) A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques. Biocybern Biomed Eng 38(1):1–15. https://doi.org/10.1016/j.bbe.2017.09.002
- 5.
Srivastava A, Goyal V, Sood SK, Sharma R (2018) Reduced saccadic velocity and pupillary width in young onset Parkinson’s disease. Neurol Psychiatry Brain Res 37:17–20. https://doi.org/10.1016/j.npbr.2017.12.005
- 6.
Kale A et al (2004) Identification of humans using gait. IEEE Trans Image Process 13(9):1163–1173. https://doi.org/10.1109/TIP.2004.832865
- 7.
Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysisbased gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25(12):1505–1518. https://doi.org/10.1109/TPAMI.2003.1251144
- 8.
Gornale SS, Patravali PU, Manza RR (2016) A survey on exploration and classification of osteoarthritis using image processing techniques. Int J Sci Eng Res 7(6):334–356
- 9.
Stamford JA, Schmidt PN, Friedl KE (2015) What engineering technology could do for quality of life in parkinson’s disease: a review of current needs and opportunities. IEEE J Biomed Health Inform 19(6):1862–1872. https://doi.org/10.1109/JBHI.2015.2464354
- 10.
Kotti M, Duffell LD, Faisal AA, McGregor AH (2017) Detecting knee osteoarthritis and its discriminating parameters using random forests. Med Eng Phys 43:19–29. https://doi.org/10.1016/j.medengphy.2017.02.004
- 11.
Debi R et al (2009) Differences in gait patterns, pain, function and quality of life between males and females with knee osteoarthritis: a clinical trial. BMC Musculoskelet Disord 10(1):127. https://doi.org/10.1186/1471-2474-10-127
- 12.
Tarnita D, Catana M, Tarnita DN (2013) Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Rom J Morphol Embryol 54(2):309–313
- 13.
Favre J, Erhart-Hledik JC, Andriacchi TP (2014) Age-related differences in sagittal-plane knee function at heel-strike of walking are increased in osteoarthritic patients. Osteoarthr Cartil 22(3):464–471. https://doi.org/10.1016/j.joca.2013.12.014
- 14.
Creaby MW, Bennell KL, Hunt MA (2012) Gait differs between unilateral and bilateral knee osteoarthritis. Arch Phys Med Rehabil 93(5):822–827. https://doi.org/10.1016/j.apmr.2011.11.029
- 15.
Kobsar D, Osis ST, Boyd JE, Hettinga BA, Ferber R (2017) Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. J Neuroeng Rehabil 14(1):94. https://doi.org/10.1186/s12984-017-0309-z
- 16.
Rutherford DJ, Baker M (2018) Knee moment outcomes using inverse dynamics and the cross product function in moderate knee osteoarthritis gait: a comparison study. J Biomech 78:150–154. https://doi.org/10.1016/j.jbiomech.2018.07.021
- 17.
Spasojevic S et al (2015) A vision-based system for movement analysis in medical applications: the example of parkinson disease. In: 10th international conference on computer vision systems, Denmark, pp 424–434, Jul 2015. https://doi.org/10.1007/978-3-319-20904-3_38
- 18.
Armand S, Decoulon G, Bonnefoy-Mazure A (2016) Gait analysis in children with cerebral palsy. Effort Open Rev 1(12):448–460. https://doi.org/10.1302/2058-5241.1.000052
- 19.
Sanders RD, Gillig PM (2010) Gait and its assessment in psychiatry. Psychiatry Neurol 7(7):38–43. https://doi.org/10.1017/CBO9781139192309.004
- 20.
Pirker W, Katzenschlager R (2017) Gait disorders in adults and the elderly. Wien Klin Wochensch 129(3–4):81–95. https://doi.org/10.1007/s00508-016-1096-4
- 21.
da Silva-Hamu TCD et al (2013) The impact of obesity in the kinematic parameters of gait in young women. Int J Gen Med 6:507–513. https://doi.org/10.2147/IJGM.S44768
- 22.
Roser M, Ritchie H (2018) Burden of disease (online). https://ourworldindata.org/burden-of-disease. Accessed 28 Oct 2018
- 23.
Woolf AD (2015) Global burden of osteoarthritis and musculoskeletal diseases. BMC Musculoskelet Disord 16(1):S3. https://doi.org/10.1186/1471-2474-16-S1-S3
- 24.
World Health Organization (2018) Musculoskeletal conditions: Feb 2018 (online). https://www.who.int/mediacentre/factsheets/musculoskeletal/en/. Accessed 12 Sep 2018
- 25.
Hoy D et al (2014) The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Disord 73(6):968–974. https://doi.org/10.1136/annrheumdis-2013-204428
- 26.
Storheim K, Zwart J-A (2014) Musculoskeletal disorders and the Global Burden of Disease study. Ann Rheum Disord 73(6):949–950. https://doi.org/10.1136/annrheumdis-2014-205327
- 27.
Lancet T (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Global Health Metr 388:1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6
- 28.
Cross M et al (2014) The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. Ann Rheum Disord 73(7):1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763
- 29.
Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN (2001) Gait characteristics of patients with knee osteoarthritis. J Biomech 34(7):907–915. https://doi.org/10.1016/S0021-9290(01)00036-7
- 30.
Vos T et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2
- 31.
Ishikawa Y et al (2017) Gait analysis of patients with knee osteoarthritis by using elevation angle: confirmation of the planar law and analysis of angular difference in the approximate plane. Adv Robot 31(1–2):68–79. https://doi.org/10.1080/01691864.2016.1229217
- 32.
Cui X, Zhao Z, Ma C, Chen F, Liao H (2018) A Gait character analyzing system for osteoarthritis pre-diagnosis using RGB-D camera and supervised classifier. In: World congress on medical physics and biomedical engineering, IFMBE proceedings, 2018, pp 297–301. https://doi.org/10.1007/978-981-10-9035-6_53
- 33.
Gait analysis to detect Alzheimer’s disease: May 14, 2018 (online). https://www.dr-hempel-network.com/digital-health-technolg y/gait-analysis-to-detect-alzheimers-disease%E2%80%8B/
- 34.
Levinger P et al (2007) The application of multiclass SVM to the detection of knee pathologies using kinetic data: a preliminary study. In: 3rd International conference on intelligent sensors, sensor networks and information, Australia, pp. 589–594. https://doi.org/10.1109/issNIP.2007.4496909
- 35.
Asay JL, Boyer KA, Andriacchi TP (2013) Repeatability of gait analysis for measuring knee osteoarthritis pain in patients with severe chronic pain. J Orthop Res 31(7):1007–1012. https://doi.org/10.1002/jor.22228
- 36.
Metcalfe AJ et al (2013) The effect of osteoarthritis of the knee on the biomechanics of other joints in the lower limbs. Bone Joint J 95(3):348–353. https://doi.org/10.1302/0301-620X.95B3.30850
- 37.
Verlekar TT, Soares LD, Correia PL (2018) Automatic classification of gait impairments using a markerless 2D video-based system. Sensors 18(9):2743. https://doi.org/10.3390/s18092743
- 38.
Astephen Wilson JL, Deluzio KJ, Dunbar MJ, Caldwell GE, Hubley-Kozey CL (2011) The association between knee joint biomechanics and neuromuscular control and moderate knee osteoarthritis radiographic and pain severity. Osteoarthr Cartil 19(2):186–193. https://doi.org/10.1016/j.joca.2010.10.020
- 39.
Astephen JL, Deluzio KJ (2005) Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique. Clin Biomech 20(2):209–217. https://doi.org/10.1016/j.clinbiomech.2004.09.007
- 40.
Farrokhi S, O’Connell M, Gil AB, Sparto PJ, Kelley Fitzgerald G (2015) Altered gait characteristics in individuals with knee osteoarthritis and self-reported knee instability. J Orthop Sports Phys Ther 45(5):351–359. https://doi.org/10.2519/jospt.2015.5540
- 41.
Phinyomark A, Osis ST, Hettinga BA, Kobsar D, Ferber R (2016) Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet Disord 17:157. https://doi.org/10.1186/s12891-016-1013-z
- 42.
Brunton LR et al (2012) Inertial sensor based gait analysis: a clinical application in patients with osteoarthritis. Osteoarthr Cartil 20(1):S107. https://doi.org/10.1016/j.joca.2012.02.121
- 43.
Hubley-Kozey CL, Astephen Wilson JL, Costello KE, Stanish WD (2015) Biomechanical and neuromuscular alterations in knee osteoarthritis and asymptomatic controls: a longitudinal study. Osteoarthr Cartil 23(2):A99–A100. https://doi.org/10.1016/j.joca.2015.02.810
- 44.
Elbaz A et al (2014) Novel classification of knee osteoarthritis severity based on spatiotemporal gait analysis. Osteoarthr Cartil 22(3):457–463. https://doi.org/10.1016/j.joca.2013.12.015
- 45.
Sims EL et al (2009) Sex differences in biomechanics associated with knee osteoarthritis. J Women Aging 21(3):159–170. https://doi.org/10.1080/08952840903054856
- 46.
Deluzio KJ, Astephen JL (2007) Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture 25(1):86–93. https://doi.org/10.1016/j.gaitpost.2006.01.007
- 47.
Mahmoudian A et al (2017) Changes in gait characteristics of women with early and established medial knee osteoarthritis: results from a 2-years longitudinal study. Clin Biomech 50:32–39. https://doi.org/10.1016/j.clinbiomech.2017.10.004
- 48.
Munoz-Organero M et al (2017) Identification of walking strategies of people with osteoarthritis of the knee using insole pressure sensors. IEEE Sens J 17(12):3909–3920. https://doi.org/10.1109/JSEN.2017.2696303
- 49.
Prakesh C, Kumar R, Mittal N (2018) Recent developments in human gait research: parameters, approaches, applications, machine learning techniques and challenges. Artif Intell Rev 49(1):1–40. https://doi.org/10.1007/s10462-016-9514-6
- 50.
Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors 12(2):2255–2283. https://doi.org/10.3390/s120202255
- 51.
Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A (2014) Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2):3362–3394. https://doi.org/10.3390/s140203362
- 52.
Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A (2012) Gait disorder rehabilitation using vision and non vision based sensors: a systematic review. Bosn J Basic Med Sci 12(3):193–202. https://doi.org/10.17305/bjbms.2012.2484
- 53.
Gait analysis (2018) (online). https://en.wikipedia.org/wiki/Gait_analysis. Accessed 20 Oct 2018
- 54.
Kharb A, Saini V (2011) YK Jain and Surender Dhiman (2011) A review of gait cycle and its patameters. Int J Comput Eng Manag 13:78–83
- 55.
Perry J, Burnfield J (2010) Gait analysis normal and pathological function. Slack Incorporated, Thorofare
- 56.
Understanding normal and pathological Gait (2018) (online). http://www.orthosurgery.gr/parousiasis/basic_science/7.pdf. Accessed 8 Nov 2018
- 57.
Baker R (2007) The history of gait analysis before the advent of modern computers. Gait Posture 26(3):331–342. https://doi.org/10.1016/j.gaitpost.2006.10.014
- 58.
Clinical Gait analysis (2018) (online). http://www.clinicalgaitanalysis.com/. Accessed 4 Oct 2018
- 59.
On the Motion of Animals. Accessed: Oct 3, 2018 (online). https://galileo.ou.edu/exhibits/motion-animals-1680-81
- 60.
Weber W, Weber EF. Mechanik Der Menschlichen Gehwerkzeuge. Göttingen, Germany: Dieterich, 1836 (online). https://catalog.hathitrust.org/Record/008593866
- 61.
Muybridge E (1958) The human figure in motion. Coll Art J 11(3):336–337
- 62.
Marey E (1874) Animal mechanism: a treatise on terrestrial and aerial locomotion. Henry S. King & Co., London
- 63.
Braune W, Fischer O (1988) Determination of the moments of inertia of the human body and its limbs. Springer, Berlin
- 64.
Connor P, Ross A (2018) Biometric recognition by gait: a survey of modalities and features. Comput Vis Image Underst 167:1–27. https://doi.org/10.1016/j.cviu.2018.01.007
- 65.
Inman VT, Ralston H, Todd F (1981) Human walking. Williams & Wilkins, London
- 66.
Eberhart H, Inman V (1947) Fundamental studies of human locomotion and other information relating to design of artificial limbs. Rep Nat Res Council, University of California, Berkeley, CA, Technical Report 1
- 67.
Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg 46(2):335–360
- 68.
Middlesworth M (2018) The Definition and caused of Musculoskeletal disorders (MSDs): May 15 (online). https://ergo-plus.com/musculoskeletal-disorders-msd/. Accessed 30 Nov 2018
- 69.
Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656. https://doi.org/10.1590/S0042-96862003000900007
- 70.
Arthritis Care (2018) Understanding Arthritis (online). https://arthritiscare.org.uk/assets/000/001/429/Understanding_FINAL_100516_web_original.pdf?1463670233. Accessed 29 Nov 2018
- 71.
Lancet T (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Global Health Metr 390:1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2
- 72.
Apostolos Kontzias, Osteoarthritis (OA): July, 2017. (online). https://www.msdmanuals.com/home/bone,-joint,-and-muscle-disorders/joint-disorders/osteoarthritis-oa. Accessed 16 Sep2018
- 73.
Arthritis: Jan 7, 2019 (online). https://www.encyclopedia.com/medicine/diseases-and-conditions/pathology/arthritis. Accessed 8 Jan 2019
- 74.
Turkiewicz A et al (2014) Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthr Cartil 22(11):1826–1832. https://doi.org/10.1016/j.joca.2014.07.015
- 75.
SE Gabriel and KMichaud (2009) Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther 11(3):229. https://doi.org/10.1186/ar2669
- 76.
Liikavainio T (2010) Biomechanics of gait and physical function in patients with knee osteoarthritis thigh muscle properties and joint loading assessment. Ph.D. dissertation, Dept Physics and Mathematics, Eastern Finland Univ (13), Kuopio 2010
- 77.
Vincent TL, Watt FE (2018) Osteoarthritis. Medicine 46(3):187–195
- 78.
Osteoarthritis of the Knee: Dec 13, 2018 (online). https://www.dovemed.com/diseases-conditions/osteoarthritis-of-the-knee/
- 79.
Dr Mary Lowth, Patient: Aug 12, 2014 (online). patient.info/doctor/abnormal-gait. Accessed 25 Oct 2018
- 80.
Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474(8):1886–1893. https://doi.org/10.1007/s11999-016-4732-4
- 81.
Sutherland DH (2001) The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 14(1):61–70. https://doi.org/10.1016/S0966-6362(01)00100-X
- 82.
Sutherland DH (2002) The evolution of clinical gait analysis Part II: kinematics. Gait Posture 16(2):159–179. https://doi.org/10.1016/S0966-6362(02)00004-8
- 83.
Culhane KM, O’Connor M, Lyons D, Lyons GM (2005) Accelerometers in rehabilitation medicine for older adults. Age Ageing 34(6):556–560. https://doi.org/10.1093/ageing/afi192
- 84.
Motion Capture (online). https://en.wikipedia.org/wiki/Motion_capture. Accessed 10 Nov 2018
- 85.
Motion Capture (online). https://www.revolvy.com/page/Motion-capture. Accessed 18 Nov 2018
- 86.
Collins AT et al (2011) 180 Knee Kinematics and kinetics of gait are altered by stochastic resonance stimulation and knee sleeve in knee Osteoarthritis. Osteoarthr Cartil 19:S90. https://doi.org/10.1016/S1063-4584(11)60207-0
- 87.
Liikavainio T, Bragge T, Hakkarainen M, Karjalainen PA, Arokoski JP (2010) Gait and muscle activation changes in men with knee osteoarthritis. Knee 17(1):69–76. https://doi.org/10.1016/j.knee.2009.05.003
- 88.
Moustakidis SP, Theocharis JB, Giakas G (2010) A fuzzy decision tree-based SVM classifier for assessing osteoarthritis severity using ground reaction force measurements. Med Eng Phys 32(10):1145–1160. https://doi.org/10.1016/j.medengphy.2010.08.006
- 89.
Mezghani N et al (2008) Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier. IEEE Trans Biom Eng 55(3):1230–1232. https://doi.org/10.1109/TBME.2007.905388
- 90.
Childs JD, Sparto PJ, Kelley Fitzgerald G, Bizzini M, Irrgang JJ (2004) Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech 19(1):44–49. https://doi.org/10.1016/j.clinbiomech.2003.08.007
- 91.
Chen K-H, Chen P-C, Liu K-C, Chan C-T (2015) Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis. Sensors 15(2):4193–4211. https://doi.org/10.3390/s150204193
- 92.
Tereso A, Martins MM, Santos CP (2015) Evaluation of gait performance of knee osteoarthritis patients after total knee arthroplasty with different assistive devices. Res Biomed Eng 31(3):208–217. https://doi.org/10.1590/2446-4740.0729
- 93.
Atallah L et al (2014) Gait asymmetry detection in older adults using a light ear-worn sensor. Physiol Meas 35(5):29–40. https://doi.org/10.1088/0967-3334/35/5/N29
- 94.
McCarthy I, Hodgins D, Mor A, Elbaz A, Segal G (2013) Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: a case control study. BMC Musculoskelet Disord 14:169. https://doi.org/10.1186/1471-2474-14-169
- 95.
Bolink S, van Laarhoven SN, Lipperts M, Heyligers IC, Grimm B (2012) Inertial sensor motion analysis of gait, sit–stand transfers and step-up transfers: differentiating knee patients from healthy controls. Physiol Meas 33(11):1947–1958. https://doi.org/10.1088/0967-3334/33/11/1947
- 96.
Alkjaer T et al (2015) Gait variability and motor control in people with knee osteoarthritis. Gait Posture 42(4):479–484. https://doi.org/10.1016/j.gaitpost.2015.07.063
- 97.
Hubley-Kozey C, Deluzio K, Dunbar M (2008) Muscle co-activation patterns during walking in those with severe knee osteoarthritis. Clin Biomech 23(1):71–80. https://doi.org/10.1016/j.clinbiomech.2007.08.019
- 98.
Ling SM et al (2007) Electromyographic patterns suggest changes in motor unit physiology associated with early osteoarthritis of the knee. Osteoarthr Cartil 15(10):1134–1140. https://doi.org/10.1016/j.joca.2007.03.024
- 99.
Arita H et al (2016) Patient-oriented outcome meadure for knee osteoarthritis is associated with gait analysis data obtained from the novel downsized motion capture technology in patients with the end-stage knee osteoarthritis. Osteoarthr Cartil 24(1):S127. https://doi.org/10.1016/j.joca.2016.01.249
- 100.
Bergmann JHM et al (2013) An attachable clothing sensor system for measuring knee joint angles. IEEE Sens J 13(10):4090–4097. https://doi.org/10.1109/jsen.2013.2277697
- 101.
Kiss RM (2011) Effect of severity of knee osteoarthritis on the variability of gait parameters. J Electromyogr Kinesiol 21(5):695–703. https://doi.org/10.1016/j.jelekin.2011.07.011
- 102.
Metcalfe AJ et al (2017) Abnormal loading and functional deficits are present in both limbs before and after unilateral knee arthroplasty. Gait Posture 55:109–115. https://doi.org/10.1016/j.gaitpost.2017.04.008
- 103.
Sun J et al (2017) Clinical gait evaluation of patients with knee osteoarthritis. Gait Posture 58:319–324. https://doi.org/10.1016/j.gaitpost.2017.08.009
- 104.
Matsumoto H et al (2015) Diagnosis of knee osteoarthritis and gait variability increases risk of falling for osteoporotic older adults: the GAINA study. Osteoporosis Sarcopenia 1(1):46–52. https://doi.org/10.1016/j.afos.2015.07.003
- 105.
Henriksen M, Aaboe J, Bliddal H (2012) The relationship between pain and dynamic knee joint loading in knee osteoarthritis varies with radiographic disease severity: a cross sectional study. Knee 19(4):392–398. https://doi.org/10.1016/j.knee.2011.07.003
- 106.
Koktas NS, Yalabik N, Yavuzer G, Duin RPW (2010) A multi-classifier for grading knee osteroarthritis using gait analysis. Pattern Recogn Lett 31(9):898–904. https://doi.org/10.1016/j.patrec.2010.01.003
- 107.
Koktas NS, Yalabik N, Yavuzer G (2006) Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data. In: 5th international conference on machine learning and applications, IEEE, USA. https://doi.org/10.1109/icmla.2006.22
- 108.
Surer E, Kose A (2011) Methods and technologies for gait analysis. Computer Analysis of Human Behavior, Springer, New York, Ch. 5. https://doi.org/10.1007/978-0-85729-994-9_5
- 109.
Middleton L, Buss AA, Bazin AI, Nixon MS (2005) A floor sensor system for gait recognition. In: Fourth IEEE workshop on automatic identification advanced technologies (AutoID’05), USA, pp 171–176. https://doi.org/10.1109/autoid.2005.2
- 110.
Md Akhtaruzzaman A, Shafie A, Raisuudin Khan M (2016) Gait analysis: systems, technologies, and importance. J Mech Med Biol 16(7):1630003. https://doi.org/10.1142/s0219519416300039
- 111.
Ko S-U, Ling SM, Schreiber C, Nesbitt M, Ferrucci L (2010) Gait patterns during different walking conditions in older adults with and without knee osteoarthritis—results from the Baltimore longitudinal study of aging. Gait Posture 33(2):205–210. https://doi.org/10.1016/j.gaitpost.2010.11.006
- 112.
Henriksen M, Graven-Nielsen T, Aaboe J, Andriacchi TP, Bliddal H (2010) Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain. Arthr Care Res 62(4):501–509. https://doi.org/10.1002/acr.20033
- 113.
Bejek Z, Paroczai R, Illyes A, Kiss RM (2006) The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 14(7):612–622. https://doi.org/10.1007/s00167-005-0005-6
- 114.
Serkan TAS et al (2014) Effects of severity of osteoarthritis on the temporospatial gait parameters in patients with knee osteoarthritis. Acta Orthop Traumatol Turc 48(6):635–641. https://doi.org/10.3944/AOTT.2014.13.0071
- 115.
Rutherford D, Baker M, Wong I, Stanish W (2017) The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait. J Electromyogr Kinesiol 34:58–64. https://doi.org/10.1016/j.jelekin.2017.04.001
- 116.
Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP (2014) Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr Cartil 22(11):1833–1839. https://doi.org/10.1016/j.joca.2014.08.009
- 117.
Calder KM et al (2014) Knee power is an important parameter in understanding medial knee joint load in knee osteoarthritis. Arthritis Care Res 66(5):687–694. https://doi.org/10.1002/acr.22223
- 118.
Meyera AJ et al (2013) Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait? J Orthop Res 31(6):921–929. https://doi.org/10.1002/jor.22304
- 119.
O’Connell M, Farrokhi S, Gil AB, Fitzgerald GK (2013) Severity of coexisting patellofemoral osteoarthritis is associated with altered sagittal-plane gait biomechanics in patients with tibiofemoral osteoarthritis. Osteoarthr Cartil 21:S87. https://doi.org/10.1016/j.joca.2013.02.187
- 120.
Zeni JA Jr, Higginson JS (2009) Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: a result of altered walking speed? Clin Biomech 24(4):372–378. https://doi.org/10.1016/j.clinbiomech.2009.02.001
- 121.
Walker CRC, Myles C, Nutton R, Rowe P (2001) Movement of the knee in osteoarthritis: the use of electrogonimetry to assess function. Bone Joint J 83(2):195–198
- 122.
Hurwitz DE et al (2000) Knee pain and joint loading in subjects with osteoarthritis of the knee. J Orthop Res 18(4):572–579. https://doi.org/10.1002/jor.1100180409
- 123.
Monil K, Milad M, Lynsey D, Margarita K, Alison M (2018) Comparison of gait biomechanics in patients with and without knee osteoarthritis during different phases of gait. J Orthop Trauma Rehabil 25:11–15. https://doi.org/10.1016/j.jotr.2017.09.005
- 124.
Na A, Piva SR, Buchanan TS (2018) Influences of knee osteoarthritis and walking difficulty on knee kinematics and kinetics. Gait Posture 61:439–444. https://doi.org/10.1016/j.gaitpost.2018.01.025
- 125.
Paterson KL et al (2017) The influence of sex and obesity on gait biomechanics in people with severe knee osteoarthritis scheduled for arthroplasty. Clin Biomech 49:72–77. https://doi.org/10.1016/j.clinbiomech.2017.08.013
- 126.
Preece SJ, Jones RK, Brown CA, Cacciatore TW, Jones Anthony K P (2016) Reductions in co-contraction following neuromuscular re-education in people with knee osteoarthritis. BMC Musculoskelet Disord 17:372. https://doi.org/10.1186/s12891-016-1209-2
- 127.
Chang AH et al (2015) External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthr Cartil 23(7):1099–1106. https://doi.org/10.1016/j.joca.2015.02.005
- 128.
Duffell LD, Southgate DFL, Gulati V, McGregor AH (2014) Balance and gait adaptations in patients with early knee osteoarthritis. Gait Posture 39(4):1057–1061. https://doi.org/10.1016/j.gaitpost.2014.01.005
- 129.
Farrokhi S et al (2013) Severity of coexisting patellofemoral disease is associated with increased impairments and functional limitations in patients with knee osteoarthritis. Arthr Care Res 65(4):544–551. https://doi.org/10.1002/acr.21866
- 130.
Simic M, Wrigley TV, Hinman RS, Hunt MA, Bennel KL (2013) Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr Cartil 21(9):1272–1280. https://doi.org/10.1016/j.joca.2013.06.001
- 131.
Hubley-Kozey CL, Robbins SM, Rutherford DJ, Stanish WD (2013) Reliability of surface electromyographic recordings during walking in individuals with knee osteoarthritis. J Electromyogr Kinesiol 23(2):334–341. https://doi.org/10.1016/j.jelekin.2012.12.002
- 132.
Kumar D, Rudolph KS, Manal KT (2012) An EMG-driven modeling approach to muscle force and joint load estimations: case study in knee osteoarthritis. J Orthop Res 30(3):377–383. https://doi.org/10.1002/jor.21544
- 133.
Esquenazi A, Talaty M (2015) Gait analysis: technology and clinical applications. Phys Med Rehabil 2015, Ch. 5
- 134.
Falconer J, Hayes KW (1991) A simple method to measure gait for use in arthritis clinical research. Arthritis Care Res 4(1):52–57. https://doi.org/10.1002/art.1790040110
- 135.
Sacco ICN et al (2012) Joint loading decreased by inexpensive and minimalist footwear in elderly women with knee osteoarthritis during stair descent. Arthritis Care Res 64(3):368–374. https://doi.org/10.1002/acr.20690
- 136.
Stephanie (2014) Statistics how to: Jan 20, 2014 (online). https://www.statisticshowto.datasciencecentral.com/parametric-and-non-parametric-data/. Accessed 23 Nov 2018
- 137.
Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ (2012) Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J Orthop Res 26(3):377–383. https://doi.org/10.1002/jor.20496
- 138.
Hall M et al (2017) The knee adduction moment and knee osteoarthritis symptoms: relationships according to radiographic disease severity. Osteoarthr Cartil 25(1):34–41. https://doi.org/10.1016/j.joca.2016.08.014
- 139.
Paterson KL, Hinman RS, Metcalf BR, Bennell KL, Wrigley TV (2017) Plug-in-Gait calculation of the knee adduction moment in people with knee osteoarthritis during shod walking: comparison of two different foot marker models. J Foot Ankle Res 10(1):8. https://doi.org/10.1186/s13047-017-0187-4
- 140.
Rutherford D, Baker M, Wong I, Stanish W (2017) The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait. J Electromyogr Kinesiol 34:58–64. https://doi.org/10.1016/j.jelekin.2017.04.001
- 141.
Khandha A et al (2017) Gait mechanics in those with/without medial compartment knee osteoarthritis 5 years after anterior cruciate ligament reconstruction. J Orthop Res 35(3):625–633. https://doi.org/10.1002/jor.23261
- 142.
MacLean KFE, Callaghan JP, Maly MR (2016) Effect of obesity on knee joint biomechanics during gait in young adults. Cogent Med 3(1):1173778. https://doi.org/10.1080/2331205X.2016.1173778
- 143.
Karatsidis A et al (2017) Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 17(1):75. https://doi.org/10.3390/s17010075
- 144.
Sparling TL et al (2014) Energy recovery in individuals with knee osteoarthritis. Osteoarthr Cartil 22(6):747–755. https://doi.org/10.1016/j.joca.2014.04.004
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author’s declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The URLs for the images taken from the internet and used in this article are provided below.
Figure 5: http://www.clinicalgaitanalysis.com/https://en.wikipedia.org/wiki/Aristotlehttps://www.leonardodavinci.net/https://www.onthisday.com/people/girolamo-cardanohttps://www.historyonthenet.com/galileo-galilei/https://www.biography.com/people/ren-descartes-37613https://commons.wikimedia.org/wiki/File:Portrait_of_Giovanni_Alfonso_Borelli_Wellcome_L0010325.jpghttps://thomaspjohnston.wordpress.com/category/postage-stamps/page/2/https://www.thefamouspeople.com/profiles/hermann-von-helmholtz-4828.phphttps://en.wikipedia.org/wiki/Eadweard_Muybridgehttps://sheridanphothistory.wordpress.com/page/2/https://me.queensu.ca/People/Deluzio/JAM/files/Baker.pdfhttps://me.queensu.ca/People/Deluzio/JAM/files/Baker.pdfhttps://ouhsc.edu/bserdac/dthompso/web/gait/knmatics/saunders.htmhttps://www.nap.edu/read/4779/chapter/14http://www.clinicalgaitanalysis.com/history/modern.htmlhttps://www.legacy.com/obituaries/sfgate/obituary.aspx?n=david-h-sutherland&pid=17877856https://ptceu.wordpress.com/2013/05/01/in-celebration-of-my-friend-and-mentor-dr-jacquelin-perry/.
Figure 7: https://www.dovemed.com/diseases-conditions/osteoarthritis-of-the-knee/ Figure 8: https://me.queensu.ca/People/Deluzio/JAM/files/Baker.pdfhttps://www.nap.edu/read/4779/chapter/14https://ouhsc.edu/bserdac/dthompso/web/gait/knmatics/saunders.htmhttps://en.wikipedia.org/wiki/Robert_H._Goddardhttp://www.oemupdate.com/feature/kistler-group-acquires-ios-gmbh/http://www.clinicalgaitanalysis.com/history/modern.htmlhttps://www.digitalcommonwealth.org/search/commonwealth-oai:73666c049https://ar-conf.ru/en/news/pochuvstvuyte-virtualnie-obyatya-tesla-suit-na-ar-conference-30543https://news.creativecow.net/company.php?folder=Viconhttps://www.mediaproductionshow.com/exhibitors/ikegami/https://www.dualshockers.com/microsoft-discontinuing-original-kinect-models-for-windows-pc-in-2015/https://www.telegraph.co.uk/education/universityeducation/8742154/Top-UK-universities-in-world-rankings.htmlhttp://physics.kenyon.edu/EarlyApparatus/Static_Electricity/Geissler_Tubes/Geissler_Tubes.htmlhttps://www.mdpi.com/1424-8220/14/2/3362/htmlhttps://www.researchgate.net/publication/301935875_Human_Gait_and_Clinical_Movement_Analysishttp://dynamolab.umed.pl/?page_id=34&lang=enhttps://www.amazon.co.uk/Tobar-01544-Gyroscope-Silver-10cm/dp/B000H6W52Shttps://www.sparkfun.com/products/retired/692https://www.amti.biz/fps-guide.aspxhttp://www.bleng.com/traditional-reflective-markershttps://www.uline.ca/Product/Detail/S-17177/Vinyl-Safety-Reflective-Tapes/Reflective-Tape-3-x-10-yds Red http://www.taheeltech.com/product/goniometers/http://www.phasespace.com/suits.htmlhttps://vizworld.com/2012/08/vicon-showcase-motion-capture-products-siggraph2012/https://www.amazon.in/Camcorders-Camcorder-Digital-External-Microphone/dp/B076DXMXMRhttps://www.dhgate.com/product/2017-anti-blue-light-screen-protector-for/402728044.htmlhttps://www.generationrobots.com/en/401430-microsoft-kinect-sensor.htmlhttps://www.microsoft.com/en-us/research/project/kinect-for-windows-sdk-beta/https://www.ordineinfermieribologna.it/2016/il-futuro-con-gli-wearable-ecco-la-maglietta-che-rileva-il-ritmo-cardiaco-e-lo-trasmette.html.
Figure 37: https://www.shutterstock.com/imagevector/vector-flat-cartoon-lens-photo-camera-777796435.
Rights and permissions
About this article
Cite this article
Kour, N., Gupta, S. & Arora, S. A Survey of Knee Osteoarthritis Assessment Based on Gait. Arch Computat Methods Eng 28, 345–385 (2021). https://doi.org/10.1007/s11831-019-09379-z
Received:
Accepted:
Published:
Issue Date: