From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap

Abstract

This work grew out of rapid developments of topology optimization approaches and emerging industry trends of “3D printing” techniques, the latter bridging to a large extent the gap between innovative design and advanced manufacturing. In the present work, we first make an application-oriented review of topology optimization approaches in an attempt to illustrate their efficacy in the design of high-performance structures. Subsequently, a broad panorama of additive manufacturing is provided with a particular interest in its application in the automotive and the aerospace sectors. Taking an aerospace bracket as an example, we further go through an entire procedure from topology optimization design to additive manufacturing, then to performance verification. In the interest of cultivating a long-term partnership upon this combination, we finally examine, in face of present and near future, limitations of additive manufacturing in the loss of geometric accuracy and performance deterioration, and provide a roadmap for future work.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Change history

  • 08 June 2020

    There are errors in reference number 190 of this article which needs to be correctly read as.

Notes

  1. 1.

    In engineering practice, the critical mass requirement is considered alternatively as a volumetric constraint in the case of single material formulation.

  2. 2.

    In view of the discrete nature, Sigmund [43] has categorized the ESO-based approach as a discrete form of the density-based approach.

  3. 3.

    Please note that the Micro-electro-mechanical system is more popularly known as MEMS.

  4. 4.

    The buy-to-fly ratio refers to the weight of the raw material purchased compared to the weight of the final part.

  5. 5.

    BLT is one of China’s largest manufacturers of metal additive manufacturing systems.

  6. 6.

    The titanium metal powder, for example, can cost about $200–400 per kilogram as reported in [166].

  7. 7.

    Compared to destructive tesings such as tensile test, IIT is considered non-destructive since the induced plastic deformation on the specimen is within the micron range.

References

  1. 1.

    Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28(2–3):87

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Meng L, Zhang WH, Zhu JH, Xu Z, Cai SH (2016) Shape optimization of axisymmetric solids with the finite cell method using a fixed grid. Acta Mech Sin 32:510

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  5. 5.

    Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993

    MATH  Article  Google Scholar 

  6. 6.

    Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, New York

    Google Scholar 

  7. 7.

    Xu Y, Zhu J, Wu Z, Cao Y, Zhao Y, Zhang W (2018) A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Adv Compos Hybrid Mater 1–18

  8. 8.

    Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC et al (2018) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 1–27

  11. 11.

    Gao T, Zhang W (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidiscip Optim 42(5):725

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Zhu J, Zhang W, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78(6):631

    MATH  Article  Google Scholar 

  13. 13.

    Zhu J, Zhang W (2010) Integrated layout design of supports and structures. Comput Methods Appl Mech Eng 199(9–12):557

    MATH  Article  Google Scholar 

  14. 14.

    Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Zhang W, Zhou Y, Zhu J (2017) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51(6):1321

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in simp-based topology optimization. Comput Methods Appl Mech Eng 282:71

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349

    MathSciNet  Article  Google Scholar 

  22. 22.

    Harzheim L, Graf G (2006) A review of optimization of cast parts using topology optimization. Struct Multidiscip Optim 31(5):388

    Article  Google Scholar 

  23. 23.

    Xia Q, Shi T, Wang MY, Liu S (2010) A level set based method for the optimization of cast part. Struct Multidiscip Optim 41(5):735

    Article  Google Scholar 

  24. 24.

    Xia Q, Shi T, Wang MY, Liu S (2011) Simultaneous optimization of cast part and parting direction using level set method. Struct Multidiscip Optim 44(6):751

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Lu J, Chen Y (2012) Manufacturable mechanical part design with constrained topology optimization. Proc Inst Mech Eng Part B J Eng Manuf 226(10):1727

    Article  Google Scholar 

  26. 26.

    Gebisa A, Lemu H (2017) Design for manufacturing to design for additive manufacturing: analysis of implications for design optimality and product sustainability. Procedia Manuf 13:724

    Article  Google Scholar 

  27. 27.

    Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within fe2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524

    MATH  Article  Google Scholar 

  28. 28.

    Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Xia L, Breitkopf P (2017) Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Methods Eng 24(2):227

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Da D, Yvonnet J, Xia L, Le MV, Li G (2018) Topology optimization of periodic lattice structures taking into account strain gradient. Comput Struct 210:28–40

    Article  Google Scholar 

  31. 31.

    Wang Y, Xu H, Pasini D (2017) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Liu S, Li Q, Chen W, Tong L, Cheng G (2015) An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front Mech Eng 10(2):126

    Article  Google Scholar 

  33. 33.

    Zhou L, Zhang W (2018) Topology optimization method considering structural connectivity for additive manufacturing with void features. Struct Multidiscip Optim (under revision)

  34. 34.

    Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157

    MathSciNet  Article  Google Scholar 

  35. 35.

    Mass Y, Amir O (2017) Topology optimization for additive manufacturing: accounting for overhang limitations using a virtual skeleton. Addit Manuf 18:58

    Google Scholar 

  36. 36.

    Wu AS, Brown DW, Kumar M, Gallegos GF, King WE (2014) An experimental investigation into additive manufacturing-induced residual stresses in 316l stainless steel. Metall Mater Trans A 45(13):6260

    Article  Google Scholar 

  37. 37.

    Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems, i. Commun Pure Appl Math 39(1):113

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193

    Article  Google Scholar 

  40. 40.

    Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1

    MATH  Article  Google Scholar 

  41. 41.

    Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120

    Article  Google Scholar 

  42. 42.

    Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031

    MathSciNet  Article  Google Scholar 

  43. 43.

    Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401

    Article  Google Scholar 

  44. 44.

    Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885

    Article  Google Scholar 

  45. 45.

    Querin O, Young V, Steven G, Xie Y (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods Appl Mech Eng 189(2):559

    MATH  Article  Google Scholar 

  46. 46.

    Huang X, Xie YM (2010) A further review of eso type methods for topology optimization. Struct Multidiscip Optim 41(5):671

    Article  Google Scholar 

  47. 47.

    Abdi M, Wildman R, Ashcroft I (2014) Evolutionary topology optimization using the extended finite element method and isolines. Eng Optim 46(5):628

    MathSciNet  Article  Google Scholar 

  48. 48.

    Da D, Xia L, Li G, Huang X (2018) Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct Multidiscip Optim 57(6):2143

    MathSciNet  Article  Google Scholar 

  49. 49.

    Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68

    Article  Google Scholar 

  50. 50.

    Zhou M, Shyy Y, Thomas H (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidiscip Optim 21(2):152

    Article  Google Scholar 

  51. 51.

    Li Q, Steven G, Xie Y (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230

    Article  Google Scholar 

  52. 52.

    van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437

    MathSciNet  Article  Google Scholar 

  53. 53.

    Zhu J, Zhao Y, Zhang W, Gu X, Gao T, Kong J, Shi G, Xu Y, Quan D (2019) Bio-inspired feature-driven topology optimization for rudder structure design. Eng Sci. https://doi.org/10.30919/es8d716

  54. 54.

    Zhang W, Zhao L, Gao T, Cai S (2017) Topology optimization with closed b-splines and boolean operations. Comput Methods Appl Mech Eng 315:652

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  56. 56.

    Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via moving morphable void (mmv) approach. Comput Methods Appl Mech Eng 322:590

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on r-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Sokołowski J, Żochowski A (2001) Encyclopedia of optimization, Springer, pp 2625–2626

  59. 59.

    Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization, ESAIM: control. Optim Calc Var 9:19

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Gao T, Qiu L, Zhang W (2017) Topology optimization of continuum structures subjected to the variance constraint of reaction forces. Struct Multidiscip Optim 56(4):755

    MathSciNet  Article  Google Scholar 

  61. 61.

    Zhang W, Yang J, Xu Y, Gao T (2014) Topology optimization of thermoelastic structures: mean compliance minimization or elastic strain energy minimization. Struct Multidiscip Optim 49(3):417

    MathSciNet  Article  Google Scholar 

  62. 62.

    Stanford B, Beran P (2012) Optimal compliant flapping mechanism topologies with multiple load cases. J Mech Des 134(5):051007

    Article  Google Scholar 

  63. 63.

    Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127(5):941

    Article  Google Scholar 

  64. 64.

    Zhu JH, Li Y, Zhang WH, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidiscip Optim 53(4):893

    MathSciNet  Article  Google Scholar 

  65. 65.

    Wang ZP, Poh LH, Dirrenberger J, Zhu Y, Forest S (2017) Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput Methods Appl Mech Eng 323:250

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Wang ZP, Turteltaub S (2015) Isogeometric shape optimization for quasi-static processes. Int J Numer Methods Eng 104:347

    MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    Collet M, Bruggi M, Duysinx P (2017) Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidiscip Optim 55(3):839

    MathSciNet  Article  Google Scholar 

  68. 68.

    Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605

    Article  Google Scholar 

  69. 69.

    Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    He W, Bindel D, Govindjee S (2009) Topology optimization in microelectromechanical resonator design, Department of Civil and Environmental Engineering, University of California

  72. 72.

    Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259

    MathSciNet  MATH  Article  Google Scholar 

  73. 73.

    Jog C (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687

    Article  Google Scholar 

  74. 74.

    Zhang W, Liu H, Gao T (2015) Topology optimization of large-scale structures subjected to stationary random excitation: an efficient optimization procedure integrating pseudo excitation method and mode acceleration method. Comput Struct 158:61

    Article  Google Scholar 

  75. 75.

    Li Q, Steven GP, Xie Y (2001) Thermoelastic topology optimization for problems with varying temperature fields. J Therm Stress 24(4):347

    Article  Google Scholar 

  76. 76.

    Xia Q, Wang MY (2008) Topology optimization of thermoelastic structures using level set method. Comput Mech 42(6):837

    MATH  Article  Google Scholar 

  77. 77.

    Pedersen P, Pedersen NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidiscip Optim 42(5):681

    Article  Google Scholar 

  78. 78.

    Michailidis G (2014) Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. Ph.D. thesis, Ecole Polytechnique X

  79. 79.

    Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, p 5614

  80. 80.

    Krog L, Tucker A, Rollema G (2002) Proceedings of 3rd Altair UK HyperWorks users Conference

  81. 81.

    Krog L, Tucker A, Kemp M, Boyd R (2004) 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4481

  82. 82.

    Kono D, Nishio S, Yamaji I, Matsubara A (2015) A method for stiffness tuning of machine tool supports considering contact stiffness. Int J Mach Tools Manuf 90:50

    Article  Google Scholar 

  83. 83.

    Liu H, Jiakun W, Yongqing W (2015) Impact of anchor bolts creep relaxation on geometric accuracy decline of large computer numerical control machine tools. J Xi’an Jiaotong Univ 49(9):14

    Google Scholar 

  84. 84.

    Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topology optimization of 2d continua for minimum compliance using parallel computing. Struct Multidiscip Optim 32(2):121

    Article  Google Scholar 

  85. 85.

    Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC (2013) Advanced materials research, vol 633, Trans Tech Publ, pp 135–147

  86. 86.

    Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US Patent 4,938,816

  87. 87.

    Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371

    Article  Google Scholar 

  88. 88.

    State-of-the-art for additive manufacturing of metals (2017). URLhttp://www.metalliskamaterial.se/globalassets/3-forskning/rapporter/2016-03898---state-of-the-art-for-additive-manufacturing-of-metals-2_1.pdf

  89. 89.

    Shellabear M, Nyrhilä O (2004) Dmls-development history and state of the art. Laser Assisted Netshape engineering 4, proceedings of the 4th LANE, pp 21–24

  90. 90.

    Calignano F, Manfredi D, Ambrosio E, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminum parts produced by dmls. Int J Adv Manuf Technol 67(9–12):2743

    Article  Google Scholar 

  91. 91.

    Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917

    Article  Google Scholar 

  92. 92.

    Brandl E, Palm F, Michailov V, Viehweger B, Leyens C (2011) Mechanical properties of additive manufactured titanium (ti–6al–4v) blocks deposited by a solid-state laser and wire. Mater Des 32(10):4665

    Article  Google Scholar 

  93. 93.

    Crivello JV, Reichmanis E (2013) Photopolymer materials and processes for advanced technologies. Chem Mater 26(1):533

    Article  Google Scholar 

  94. 94.

    Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215

    Article  Google Scholar 

  95. 95.

    Wilkes J, Hagedorn YC, Meiners W, Wissenbach K (2013) Additive manufacturing of zro2–al2o3 ceramic components by selective laser melting. Rapid Prototyp J 19(1):51

    Article  Google Scholar 

  96. 96.

    Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5(4):245

    Google Scholar 

  97. 97.

    Agrawal BK (1988) Introduction to engineering materials. Tata McGraw-Hill Education, New York

    Google Scholar 

  98. 98.

    Badrossamay M, Childs T (2007) Further studies in selective laser melting of stainless and tool steel powders. Int J Mach Tools Manuf 47(5):779

    Article  Google Scholar 

  99. 99.

    Abd-Elghany K, Bourell D (2012) Property evaluation of 304l stainless steel fabricated by selective laser melting. Rapid Prototyp J 18(5):420

    Article  Google Scholar 

  100. 100.

    Kempen K, Yasa E, Thijs L, Kruth JP, Van Humbeeck J (2011) Microstructure and mechanical properties of selective laser melted 18ni-300 steel. Phys Procedia 12:255

    Article  Google Scholar 

  101. 101.

    Cormier D, Harrysson O, West H (2004) Characterization of h13 steel produced via electron beam melting. Rapid Prototyp J 10(1):35

    Article  Google Scholar 

  102. 102.

    Snoxall N (2018) Titanium challenge-design proposal. https://altairuniversity.com/wp-content/uploads/2013/09/Design-Proposal-Altair.pdf. Accessed 1 Aug 2018

  103. 103.

    Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured ti–6al–4v via electron beam melting. Acta Mater 97:1

    Article  Google Scholar 

  104. 104.

    Baufeld B, Brandl E, Van der Biest O (2011) Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of ti–6al–4v components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol 211(6):1146

    Article  Google Scholar 

  105. 105.

    Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the ti–6al–4v alloy processed by selective laser melting. Metall Mater Trans A 42(10):3190

    Article  Google Scholar 

  106. 106.

    Brice C, Shenoy R, Kral M, Buchannan K (2015) Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater Sci Eng A 648:9

    Article  Google Scholar 

  107. 107.

    Yang KK, Zhu JH, Wang C, Jia DS, Song LL, Zhang WH (2018) Experimental validation of 3d printed material behaviors and their influence on the structural topology design. Comput Mech 61(5):581–598

    MATH  Article  Google Scholar 

  108. 108.

    Yuan S, Shen F, Chua CK, Zhou K (2018) Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog Polym Sci

  109. 109.

    Yuan S, Zheng Y, Chua CK, Yan Q, Zhou K (2018) Electrical and thermal conductivities of mwcnt/polymer composites fabricated by selective laser sintering. Compos Part A Appl Sci Manuf 105:203

    Article  Google Scholar 

  110. 110.

    Stratasys (2014) Direct digital manufacturing at bmw (January 15, 2014). URLhttp://3dprinting.trimech.com/case-study-fdm-bmw

  111. 111.

    Jauhar S, Asthankar K, Kuthe A (2012) Cost benefit analysis of rapid manufacturing in automotive industries. Adv Mech Eng Appl (AMEA) 2(3):181

    Google Scholar 

  112. 112.

    Center FM (2014) Ford 3d-printed auto parts save millions, boost quality. URLhttps://www.plasticstoday.com/content/ford-3d-printed-auto-parts-save-millions-boost-quality/97214356120060

  113. 113.

    Fleming J (2018) Additive manufacturing in the automotive industry: insights from ford and bmw (September 15, 2018). URLhttps://generisgp.com/2018/01/02/additive-manufacturing-automotive-ford-bmw/

  114. 114.

    Press DU (2018) 3d opportunity in the automotive undustry—additive manufacturing hits the road (September 15, 2018). URLhttps://www2.deloitte.com/content/dam/insights/us/articles/additive-manufacturing-3d-opportunity-in-automotive/DUP_707-3D-Opportunity-Auto-Industry_MASTER.pdf

  115. 115.

    D. printing industry (2018) Volkswagen to mass customise 100,000 3d printed units per year using the newly launched hp metal jet 3d printer (September 14, 2018). URLhttps://spare-parts-3d.com/2018/09/14/vw-customise-100000-3d-printed-hp-metal-jet/

  116. 116.

    ENGINEER (2018) Bmw group to invest over 10 m €in new additive manufacturing campus (April 18, 2018). URLhttps://www.theengineer.co.uk/bmw-group-additive-manufacturing-campus/

  117. 117.

    Tomlin M, Meyer J (2011) Proceeding of the 7th altair CAE technology conference, pp 1–9

  118. 118.

    Machunze W, Lehmann T, Hein O (2013) 2013 European altair technology conference, pp 1–25

  119. 119.

    Snoxall N (2013) Topology optimization for additive manufacture: Titanium challenge—design proposal. URLhttps://altairuniversity.com/wp-content/uploads/2013/09/Design-Proposal-Altair.pdf

  120. 120.

    Sher D (2013) 5-m long titanium airplane part 3d printed in one piece (January 18, 2013). URLhttps://www.3ders.org/articles/20130118-3-meter-long-titanium-airplane-part-3d-printed-in-one-piece.html

  121. 121.

    Sher D (2018) Ge aviation already 3d printed 30,000 fuel nozzles for its leap engine (October 5, 2018). URLhttps://www.3dprintingmedia.network/ge-aviation-already-3d-printed-30000-fuel-nozzles-for-its-leap-engine/

  122. 122.

    Tripathy S (2016) Topology optimization for additive manufacturing applications. http://blogs.3ds.com/simulia/topology-optimization-for-additive-manufacturing-applications/. Accessed 23 Aug 2016

  123. 123.

    EOS (2018) Aerospace: Ruag-additive manufacturing of satellite components (September 15, 2018). URLhttps://www.eos.info/case_studies/additive-manufacturing-of-antenna-bracket-for-satellite

  124. 124.

    EOS (2018) Eos and airbus group innovations team on aerospace sustainability study for industrial 3d printing. https://www.eos.info/eos-airbusgroupinnovationteam-aerospace-sustainability-study. Accessed 31 June 2018

  125. 125.

    Kranz J, Herzog D, Emmelmann C (2015) Design guidelines for laser additive manufacturing of lightweight structures in ti–al6–v4. J Laser Appl 27(S1):S14001

    Article  Google Scholar 

  126. 126.

    Zelinski P (2016) 7 Helpful numbers quantify design rules for additive manufacturing. URLhttps://www.additivemanufacturing.media/blog/post/7-helpful-numbers-quantify-design-rules-for-am

  127. 127.

    Hu K, Jin S, Wang CC (2015) Support slimming for single material based additive manufacturing. Comput Aided Des 65:1

    Article  Google Scholar 

  128. 128.

    Morgan H, Cherry J, Jonnalagadda S, Ewing D, Sienz J (2016) Part orientation optimisation for the additive layer manufacture of metal components. Int J Adv Manuf Technol 86(5–8):1679

    Article  Google Scholar 

  129. 129.

    Pandey PM, Thrimurthulu K, Reddy NV (2004) Optimal part deposition orientation in fdm by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069

    MATH  Article  Google Scholar 

  130. 130.

    Phatak AM, Pande S (2012) Optimum part orientation in rapid prototyping using genetic algorithm. J Manuf Syst 31(4):395

    Article  Google Scholar 

  131. 131.

    Huang X, Ye C, Wu S, Guo K, Mo J (2009) Sloping wall structure support generation for fused deposition modeling. Int J Adv Manuf Technol 42(11–12):1074

    Article  Google Scholar 

  132. 132.

    Vanek J, Galicia JAG, Benes B (2014) Computer graphics forum, vol 33, Wiley Online Library, pp 117–125

  133. 133.

    Mezzadri F, Bouriakov V, Qian X (2018) Topology optimization of self-supporting support structures for additive manufacturing. Addit Manuf 21:666

    Google Scholar 

  134. 134.

    Dumas J, Hergel J, Lefebvre S (2014) Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans Gr (TOG) 33(4):98

    Google Scholar 

  135. 135.

    Barnett E, Gosselin C (2015) Weak support material techniques for alternative additive manufacturing materials. Addit Manuf 8:95

    Google Scholar 

  136. 136.

    Brackett D, Ashcroft I, Hague R (2011) Proceedings of the solid freeform fabrication symposium, Austin, TX, vol 1, pp 348–362

  137. 137.

    Zhang W, Zhou L (2018) Topology optimization of self-supporting structures with polygon features for additive manufacturing. Comput Methods Appl Mech Eng 334:56

    MathSciNet  MATH  Article  Google Scholar 

  138. 138.

    Meyer B, Minn E (2016) Accuracy in additive manufacturing. Mach Des 84:56

    Google Scholar 

  139. 139.

    Murr LE, Gaytan S, Ceylan A, Martinez E, Martinez J, Hernandez D, Machado B, Ramirez D, Medina F, Collins S et al (2010) Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater 58(5):1887

    Article  Google Scholar 

  140. 140.

    Press DU (2018) Ultrasonic additive manufacturing (September 15, 2018). URLhttps://fabrisonic.com/ultrasonic-additive-manufacturing-overview/

  141. 141.

    Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1

    Article  Google Scholar 

  142. 142.

    Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198

    Article  Google Scholar 

  143. 143.

    Tripathy S, Chin C, London T, Ankalkhope U, Oancea V (2017) Process modeling and validation of powder bed metal additive manufacturing. In: NAFEMS world congress, Stockholm, Sweden

  144. 144.

    Wu X, Liang J, Mei J, Mitchell C, Goodwin P, Voice W (2004) Microstructures of laser-deposited ti–6al–4v. Mater Des 25(2):137

    Article  Google Scholar 

  145. 145.

    Mok SH, Bi G, Folkes J, Pashby I (2008) Deposition of ti–6al–4v using a high power diode laser and wire, part i: investigation on the process characteristics. Surf Coat Technol 202(16):3933

    Article  Google Scholar 

  146. 146.

    Zhu Y, Tian X, Li J, Wang H (2015) The anisotropy of laser melting deposition additive manufacturing ti–6.5 al–3.5 mo–1.5 zr–0.3 si titanium alloy. Mater Des 67:538

    Article  Google Scholar 

  147. 147.

    Brandl E, Baufeld B, Leyens C, Gault R (2010) Additive manufactured ti–6al–4v using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5(Pt 2):595

    Article  Google Scholar 

  148. 148.

    Baufeld B (2012) Effect of deposition parameters on mechanical properties of shaped metal deposition parts. Proc Inst Mech Eng Part B J Eng Manuf 226(1):126

    Article  Google Scholar 

  149. 149.

    Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26

    Article  Google Scholar 

  150. 150.

    Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of ti–6al–4v. Acta Mater 58(9):3303

    Article  Google Scholar 

  151. 151.

    Papadakis L, Loizou A, Risse J, Bremen S, Schrage J (2014) A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting. Virtual Phys Prototyp 9(1):17

    Article  Google Scholar 

  152. 152.

    Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 57(4):583

    MATH  Article  Google Scholar 

  153. 153.

    Contuzzi N, Campanelli S, Ludovico A (2011) 3 d finite element analysis in the selective laser melting process. Int J Simul Model 10(3):113

    Article  Google Scholar 

  154. 154.

    Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M (2001) The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol 111(1–3):210

    Article  Google Scholar 

  155. 155.

    Alyoshin N, Murashov V, Grigoryev M, Yevgenov A, Karachevtsev F, Shchipakov N, Vasilenko S (2017) Defects of heat-resistant alloys synthesized by the method of selective laser melting. Inorg Mater Appl Res 8(1):27

    Article  Google Scholar 

  156. 156.

    Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638

    Article  Google Scholar 

  157. 157.

    De A, DebRoy T (2006) Improving reliability of heat and fluid flow calculation during conduction mode laser spot welding by multivariable optimisation. Sci Technol Weld Join 11(2):143

    Article  Google Scholar 

  158. 158.

    Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the slm/dmls residual stresses problem: review and future research need. Technologies 5(2):15

    Article  Google Scholar 

  159. 159.

    Kruth JP, Deckers J, Yasa E, Wauthlé R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc Inst Mech Eng Part B J Eng Manuf 226(6):980

    Article  Google Scholar 

  160. 160.

    Carter LN, Martin C, Withers PJ, Attallah MM (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in slm powder-bed fabricated nickel superalloy. J Alloys Compd 615:338

    Article  Google Scholar 

  161. 161.

    Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581

    Article  Google Scholar 

  162. 162.

    Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann Manuf Technol 53(1):195

    Article  Google Scholar 

  163. 163.

    Popovich V, Borisov E, Popovich A, Sufiiarov VS, Masaylo D, Alzina L (2017) Functionally graded inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des 114:441

    Article  Google Scholar 

  164. 164.

    Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of ti–6al–4v components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309

    Article  Google Scholar 

  165. 165.

    Murr L (2015) Metallurgy of additive manufacturing: examples from electron beam melting. Addit Manuf 5:40

    Google Scholar 

  166. 166.

    Froes F, Friedrich H, Kiese J, Bergoint D (2004) Titanium in the family automobile: the cost challenge. JOM 56(2):40

    Article  Google Scholar 

  167. 167.

    Withers P, Bhadeshia H (2001) Residual stress. Part 1—measurement techniques. Mater Sci Technol 17(4):355

    Article  Google Scholar 

  168. 168.

    Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X (2015) Identification of material properties using indentation test and shape manifold learning approach. Comput Methods Appl Mech Eng 297:239

    MathSciNet  MATH  Article  Google Scholar 

  169. 169.

    Mott BW (1956) Micro-indentation hardness testing. Butterworths Scientific Publications, London

    Google Scholar 

  170. 170.

    Tabor D (1951) The hardness of metals, vol 10. Clarendon Press, Oxford

    Google Scholar 

  171. 171.

    Smith RL, Sandly GE (1922) An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness. Proc Inst Mech Eng 102(1):623

    Article  Google Scholar 

  172. 172.

    Meng L, Breitkopf P, Le Quilliec G (2017) An insight into the identifiability of material properties by instrumented indentation test using manifold approach based on ph curve and imprint shape. Int J Solids Struct 106:13

    Article  Google Scholar 

  173. 173.

    Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X (2018) On the study of mystical materials identified by indentation on power law and voce hardening solids. Int J Mater Form 1–16

  174. 174.

    Mukhopadhyay A (1999) Comparative study of indentation fatigue in structural ceramics. J Mater Sci Lett 18(4):333

    Article  Google Scholar 

  175. 175.

    Kamali-Bernard S, Keinde D, Bernard F (2014) Effect of aggregate type on the concrete matrix/aggregates interface and its influence on the overall mechanical behavior. A numerical study. Key Eng Mater 617:14

    Article  Google Scholar 

  176. 176.

    Lu Y, Shinozaki D (2005) Effects of substrate constraint on micro-indentation testing of polymer coatings. Mater Sci Eng A 396(1–2):77

    Article  Google Scholar 

  177. 177.

    Sabnis PA, Forest S, Arakere NK, Yastrebov VA (2013) Crystal plasticity analysis of cylindrical indentation on a ni-base single crystal superalloy. Int J Plast 51:200

    Article  Google Scholar 

  178. 178.

    Moy CK, Bocciarelli M, Ringer SP, Ranzi G (2011) Identification of the material properties of al 2024 alloy by means of inverse analysis and indentation tests. Mater Sci Eng A 529:119

    Article  Google Scholar 

  179. 179.

    Moussa C, Bartier O, Mauvoisin G, Hernot X, Collin JM, Delattre G (2014) Experimental and numerical investigation on carbonitrided steel characterization with spherical indentation. Surf Coat Technol 258:782

    Article  Google Scholar 

  180. 180.

    Zeng Y, Yu X, Wang H (2018) A new pod-based approximate Bayesian computation method to identify parameters for formed ahss. Int J Solids Struct 160:120–133

    Article  Google Scholar 

  181. 181.

    Chen X, Yan J, Karlsson AM (2006) On the determination of residual stress and mechanical properties by indentation. Mater Sci Eng A 416(1):139

    Article  Google Scholar 

  182. 182.

    Rickhey F, Lee JH, Lee H (2015) A contact size-independent approach to the estimation of biaxial residual stresses by knoop indentation. Mater Des 84:300

    Article  Google Scholar 

  183. 183.

    Shen L, He Y, Liu D, Gong Q, Zhang B, Lei J (2015) A novel method for determining surface residual stress components and their directions in spherical indentation. J Mater Res 30(08):1078

    Article  Google Scholar 

  184. 184.

    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127

    Article  Google Scholar 

  185. 185.

    Collet M, Noël L, Bruggi M, Duysinx P (2018) Topology optimization for microstructural design under stress constraints. Struct Multidiscip Optim 58(6):2677–2695

    MathSciNet  Article  Google Scholar 

  186. 186.

    Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49(8):1747

    MATH  Article  Google Scholar 

  187. 187.

    Wallach J, Gibson L (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38(40–41):7181

    MATH  Article  Google Scholar 

  188. 188.

    Wang AJ, McDowell D (2003) Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. Int J Solids Struct 40(9):2085

    MATH  Article  Google Scholar 

  189. 189.

    Wang H, Chen Y, Rosen DW (2005) ASME 2005 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 421–427

  190. 190.

    Yuan S, Chua CK, Zhou K (2018) 3d-printed mechanical metamaterials with high energy absorption. Adv Mater Technol 1800419

  191. 191.

    Doubrovski Z, Verlinden JC, Geraedts JM (2011) ASME 2011 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 635–646

  192. 192.

    Eiamsa-ard K, Ruan J, Ren L, Liou FW (2005) ASME 2005 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 1309–1319

  193. 193.

    Kanakanala D, Routhu S, Ruan J, Liu XF, Liou F (2010) ASME 2010 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 425–432

  194. 194.

    Routhu S, Kanakanala D, Ruan J, Liu XF, Liou F (2010) ASME 2010 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 415–423

  195. 195.

    Hou Y, Sapanathan T, Dumon A, Culière P, Rachik M (2018) A novel development of bi-level reduced surrogate model to predict ductile fracture behaviors. Eng Fract Mech 188:232

    Article  Google Scholar 

  196. 196.

    Hou Y, Tie Y, Li C, Sapanathan T, Rachik M (2019) Low-velocity impact behaviors of repaired cfrp laminates: effect of impact location and external patch configurations. Compos Part B Eng 163:669

    Article  Google Scholar 

  197. 197.

    Idriss M, Bartier O, Mauvoisin G, Hernot X (2019) Determining the stress level of monotonic plastically pre-hardened metal sheets using the spherical instrumented indentation technique. J Mech Sci Technol 33(1):183

    Article  Google Scholar 

  198. 198.

    Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55(8):1618

    MATH  Article  Google Scholar 

  199. 199.

    Meng L, Raghavan B, Bartier O et al (2017) An objective meta-modeling approach for indentation-based material characterization. Mech Mater 107:31–44

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to give special thanks to Liang Xia, from Huazhong University of Science and Technology, China, who worked closely with the author on every step of the research and helped to bring the article into its current shape. We would also like to thank Caroline Verdari and Jing Wen, from Université de Technologie de Compiègne, France, for their kind help with the preparation of the indentation specimens. The financial support from the National Key Research and Development Program of China (2017YFB1102800), the National Natural Science Foundation of China (11672239, 51735005, 11620101002) is also acknowledged. This work has also been supported by the French National Research Agency (ANR) through the research grant Micromorfing, ANR-14-CE07-0035-01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tong Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Zhang, W., Quan, D. et al. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch Computat Methods Eng 27, 805–830 (2020). https://doi.org/10.1007/s11831-019-09331-1

Download citation