Recent Trends in the Modeling and Quantification of Non-probabilistic Uncertainty

Abstract

This paper gives an overview of recent advances in the field of non-probabilistic uncertainty quantification. Both techniques for the forward propagation and inverse quantification of interval and fuzzy uncertainty are discussed. Also the modeling of spatial uncertainty in an interval and fuzzy context is discussed. An in depth discussion of a recently introduced method for the inverse quantification of spatial interval uncertainty is provided and its performance is illustrated using a case studies taken from literature. It is shown that the method enables an accurate quantification of spatial uncertainty under very low data availability and with a very limited amount of assumptions on the underlying uncertainty. Finally, also a conceptual comparison with the class of Bayesian methods for uncertainty quantification is provided.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Abdel-Tawab K, Noor AK (1999) Uncertainty analysis of welding residual stress fields. Comput Methods Appl Mech Eng 179(3–4):327–344. https://doi.org/10.1016/S0045-7825(99)00045-6

    Article  MATH  Google Scholar 

  2. 2.

    Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1):281–294

    Article  Google Scholar 

  3. 3.

    Ahmadian H, Mottershead J, Friswell M (1998) Regularisation methods for finite element model updating. Mech Syst Signal Process 12(1):47–64

    Article  Google Scholar 

  4. 4.

    Balu A, Rao B (2012) High dimensional model representation based formulations for fuzzy finite element analysis of structures. Finite Elem Anal Des 50:217–230

    Article  Google Scholar 

  5. 5.

    Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Beck JL, Au SK (2002) Bayesian updating of structural models and reliability using markov chain monte carlo simulation. J Eng Mech 128(4):380–391

    Article  Google Scholar 

  7. 7.

    Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. J Eng Mech 124(4):455–461

    Article  Google Scholar 

  8. 8.

    Beck JL, Yuen KV (2004) Model selection using response measurements: Bayesian probabilistic approach. J Eng Mech 130(2):192–203

    Article  Google Scholar 

  9. 9.

    Beer M, Ferson S, Kreinovich V (2013) Imprecise probabilities in engineering analyses. Mech Syst Signal Process 37(1):4–29

    Article  Google Scholar 

  10. 10.

    Beer M, Ferson S, Kreinovich V (2013) Imprecise probabilities in engineering analyses. Mech Syst Signal Process 37(1):4–29. https://doi.org/10.1016/j.ymssp.2013.01.024

    Article  Google Scholar 

  11. 11.

    Beer M, Kreinovich V (2013) Interval or moments: Which carry more information? Soft Comput 17(8):1319–1327. https://doi.org/10.1007/s00500-013-1002-1

    Article  MATH  Google Scholar 

  12. 12.

    Beer M, Liebscher M, Möller B (2004) Structural design under fuzzy randomness. In: Proceedings of the NSF workshop on reliable engineering computing, pp 215–234

  13. 13.

    de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry. Springer, Berlin. https://doi.org/10.1007/978-3-540-77974-2

    Google Scholar 

  14. 14.

    Betz W, Papaioannou I, Straub D (2014) Numerical methods for the discretization of random fields by means of the Karhunen–Loeve expansion. Comput Methods Appl Mech Eng 271:109–129. https://doi.org/10.1016/j.cma.2013.12.010

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Biondini F, Bontempi F, Malerba PG (2004) Fuzzy reliability analysis of concrete structures. Comput Struct 82(13–14):1033–1052. https://doi.org/10.1016/j.compstruc.2004.03.011

    Article  MATH  Google Scholar 

  16. 16.

    de Boor C, Ron A (1990) On multivariate polynomial interpolation. Constr Approx 6(3):287–302. https://doi.org/10.1007/BF01890412

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Boulkaibet I, Marwala T, Friswell M, Khodaparast HH, Adhikari S (2017) Fuzzy finite element model updating using metaheuristic optimization algorithms. arXiv preprint arXiv:1701.00833

  18. 18.

    Bulgakov BV (1940) Fehleranhäufung bei kreiselapparaten. Ingenieur-Archiv 11(6):461–469. https://doi.org/10.1007/BF02088988

    Article  MATH  Google Scholar 

  19. 19.

    Bulgakov BV (1946) On the accumulation of disturbances in linear os- cillatory systems with constant coefficients (in russian). Proc USSR Acad Sci 51:343–345

    Google Scholar 

  20. 20.

    Butlin T (2013) Anti-optimisation for modelling the vibration of locally nonlinear structures: an exploratory study. J Sound Vib 332(26):7099–7122. https://doi.org/10.1016/j.jsv.2013.06.028

    Article  Google Scholar 

  21. 21.

    Campi MC, Calafiore G, Garatti S (2009) Interval predictor models: identification and reliability. Automatica 45(2):382–392

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Catallo L (2004) Genetic anti-optimization for reliability structural assessment of precast concrete structures. Comput Struct 82(13–14):1053–1065. https://doi.org/10.1016/j.compstruc.2004.03.018

    Article  Google Scholar 

  23. 23.

    Chen L, Rao S (1997) Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems. Finite Elem Anal Des 27(1):69–83. https://doi.org/10.1016/S0168-874X(97)00005-X

    Article  MATH  Google Scholar 

  24. 24.

    Chen S, Lian H, Yang X (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53(2):393–407. https://doi.org/10.1002/nme.281

    Article  MATH  Google Scholar 

  25. 25.

    Cheung SH, Beck JL (2009) Bayesian model updating using hybrid monte carlo simulation with application to structural dynamic models with many uncertain parameters. J Eng Mech 135(4):243–255

    Article  Google Scholar 

  26. 26.

    Ching J, Chen YC (2007) Transitional markov chain monte carlo method for bayesian model updating, model class selection, and model averaging. J Eng Mech 133(7):816–832

    Article  Google Scholar 

  27. 27.

    Choi CK, Yoo HH (2017) Stochastic modeling and vibration analysis of rotating beams considering geometric random fields. J Sound Vib 388:105–122. https://doi.org/10.1016/j.jsv.2016.10.030

    Article  Google Scholar 

  28. 28.

    Chowdhary K, Najm HN (2016) Bayesian estimation of karhunen-loève expansions; a random subspace approach. J Comput Phys 319:280–293. https://doi.org/10.1016/j.jcp.2016.02.056

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Civanlar MR, Trussell HJ (1986) Constructing membership functions using statistical data. Fuzzy Sets Syst 18(1):1–13

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Comba JLD, Stolfi J (1993) Affine arithmetic and its applications to computer graphics. In: Anais do VII SIBGRAPI, pp 9–18

  31. 31.

    Crespo LG, Kenny SP, Giesy DP (2016) Interval predictor models with a linear parameter dependency. J Verif Valid Uncertain Quantif 1(2):021007

    Article  Google Scholar 

  32. 32.

    Crombecq K, Couckuyt I, Gorissen D, Dhaene T (2009) Space-filling sequential design strategies for adaptive surrogate modelling. In: The first international conference on soft computing technology in civil, structural and environmental engineering

  33. 33.

    De Munck M, Moens D, Desmet W, Vandepitte D (2009) An efficient response surface based optimisation method for non-deterministic harmonic and transient dynamic analysis. CMES Comput Model Eng Sci 47(2):119–166. https://doi.org/10.3970/cmes.2009.047.119

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    De Oliveira V, Kedem B, Short DA (1997) Bayesian prediction of transformed gaussian random fields. J Am Stat Assoc 92(440):1422–1433

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Degrauwe D, Lombaert G, Roeck GD (2010) Improving interval analysis in finite element calculations by means of affine arithmetic. Comput Struct 88(3–4):247–254. https://doi.org/10.1016/j.compstruc.2009.11.003

    Article  Google Scholar 

  36. 36.

    Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38: 325–339

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Deng Z, Guo Z, Zhang X (2016) Non-probabilistic set-theoretic models for transient heat conduction of thermal protection systems with uncertain parameters. Appl Therm Eng 95:10–17

    Article  Google Scholar 

  38. 38.

    Deng Z, Guo Z, Zhang X (2017) Interval model updating using perturbation method and radial basis function neural networks. Mech Syst Signal Process 84:699–716

    Article  Google Scholar 

  39. 39.

    Di W, Wei G (2016) Uncertain static plane stress analysis with interval fields. Int J Numer Methods Eng 110(13):1272–1300. https://doi.org/10.1002/nme.5457

    MathSciNet  Article  Google Scholar 

  40. 40.

    Do DM, Gao W, Song C (2016) Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters. Comput Methods Appl Mech Eng 300:657–688. https://doi.org/10.1016/j.cma.2015.11.032

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Dogan M, Van Dam RL, Liu G, Meerschaert MM, Butler JJ, Bohling GC, Benson DA, Hyndman DW (2014) Predicting flow and transport in highly heterogeneous alluvial aquifers. Geophys Res Lett 41(21):7560–7565

    Article  Google Scholar 

  42. 42.

    Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Donders S, Vandepitte D, Van de Peer J, Desmet W (2004) The short transformation method to predict the FRF of dynamic structures subject to uncertainty. In: Proceedings of ISMA, pp 3043–3054

  44. 44.

    Donders S, Vandepitte D, de Peer JV, Desmet W (2005) Assessment of uncertainty on structural dynamic responses with the short transformation method. J Sound Vib 288(3):523–549. https://doi.org/10.1016/j.jsv.2005.07.003 Uncertainty in structural dynamicsUncertainty in structural dynamics

    Article  Google Scholar 

  45. 45.

    Dong W, Shah HC (1987) Vertex method for computing of fuzzy variables. Fuzzy Sets Syst 24:65–78. https://doi.org/10.1016/0165-0114(87)90114-X

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  47. 47.

    Dubois D, Prade H (2012) Possibility theory: an approach to computerized processing of uncertainty. Springer Science & Business Media, New York

    Google Scholar 

  48. 48.

    Elishakoff I (1990) An idea of uncertainty triangle. Shock Vib Digest 22(10):1

    Article  Google Scholar 

  49. 49.

    Elishakoff I (2000) Possible limitations of probabilistic methods in engineering. Appl Mech Rev 53(2):19. https://doi.org/10.1115/1.3097337

    MathSciNet  Article  Google Scholar 

  50. 50.

    Elishakoff I (2000) Possible limitations of probabilistic methods in engineering. Appl Mech Rev 53(2):19–36

    MathSciNet  Article  Google Scholar 

  51. 51.

    Elishakoff I, Miglis Y (2012) Novel parameterized intervals may lead to sharp bounds. Mech Res Commun 44:1–8. https://doi.org/10.1016/j.mechrescom.2012.04.004

    Article  Google Scholar 

  52. 52.

    Elishakoff I, Sarlin N (2016) Uncertainty quantification based on pillars of experiment, theory, and computation. Part I: data analysis. Mech Syst Signal Process 74:54–72. https://doi.org/10.1016/j.ymssp.2015.04.035

    Article  Google Scholar 

  53. 53.

    Elishakoff I, Sarlin N (2016) Uncertainty quantification based on pillars of experiment, theory, and computation. Part II: theory and computation. Mech Syst Signal Process 2:74

  54. 54.

    Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems, vol 375. Springer Science & Business Media, New York

    Google Scholar 

  55. 55.

    Faes M (2017) Interval methods for the identification and quantification of inhomogeneous uncertainty in finite element models. Ph.D. thesis, KU Leuven, Department of Mechanical Engineering

  56. 56.

    Faes M, Broggi M, Beer M, Moens D (2018) Failure probability under uncertain surrogate model predictions. In: Proceedings of the joint ICVRAM ISUMA UNCERTAINTIES conference

  57. 57.

    Faes M, Broggi M, Patelli E, Govers Y, Mottershead J, Beer M, Moens D (2019) A multivariate interval approach for inverse uncertainty quantification with limited experimental data. Mech Syst Signal Process 118:534–548. https://doi.org/10.1016/j.ymssp.2018.08.050. https://www.sciencedirect.com/science/article/pii/S0888327018305946?via%3Dihub

    Article  Google Scholar 

  58. 58.

    Faes M, Cerneels J, Vandepitte D, Moens D (2016) Identification of Interval Fields for Spatial Uncertainty Representation in Finite Element Models. In: Proceedings of the VII European congress on computational methods in applied sciences and engineering (ECCOMAS congress 2016), vol 3, pp 6091–6098. https://doi.org/10.7712/100016.2243.4995. http://www.eccomasproceedia.org/conferences/eccomas-congresses/eccomas-congress-2016/2243

  59. 59.

    Faes M, Cerneels J, Vandepitte D, Moens D (2017) Identification and quantification of multivariate interval uncertainty in finite element models. Comput Methods Appl Mech Eng 315:896–920. https://doi.org/10.1016/j.cma.2016.11.023

    MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Faes M, Cerneels J, Vandepitte D, Moens D (2017) Influence of measurement data metrics on the identification of interval fields for the representation of spatial variability in finite element models. PAMM 16(1):27–30. https://doi.org/10.1002/pamm.201610008

    Article  MATH  Google Scholar 

  61. 61.

    Faes M, Moens D (2017) Identification and quantification of spatial interval uncertainty in numerical models. Comput Struct 192:16–33. https://doi.org/10.1016/j.compstruc.2017.07.006

    Article  Google Scholar 

  62. 62.

    Faes M, Moens D (2019) Multivariate dependent interval finite element analysis via convex hull pair constructions and the extended transformation method. Comput Methods Appl Mech Eng 347:85–102. https://doi.org/10.1016/j.cma.2018.12.021. http://www.sciencedirect.com/science/article/pii/S0045782518306200

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Fang SE, Zhang QH, Ren WX (2015) An interval model updating strategy using interval response surface models. Mech Syst Signal Process 60–61:909–927. https://doi.org/10.1016/j.ymssp.2015.01.016

    Article  Google Scholar 

  64. 64.

    Farkas L, Moens D, Donders S, Vandepitte D (2012) Optimisation study of a vehicle bumper subsystem with fuzzy parameters. Mech Syst Signal Process 32:59–68

    Article  Google Scholar 

  65. 65.

    Farley B, Clark W (1954) Simulation of self-organizing systems by digital computer. Trans IRE Prof Group Inform Theory 4(4):76–84. https://doi.org/10.1109/TIT.1954.1057468

    MathSciNet  Article  Google Scholar 

  66. 66.

    Fedele F, Muhanna RL, Xiao N, Mullen RL (2014) Interval-based approach for uncertainty propagation in inverse problems. J Eng Mech 4(1):1–7. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000815

    Article  Google Scholar 

  67. 67.

    Ferson S, Ginzburg LR (1996) Different methods are needed to propagate ignorance and variability. Reliab Eng Syst Saf 54(2):133–144. https://doi.org/10.1016/S0951-8320(96)00071-3

    Article  Google Scholar 

  68. 68.

    Ferson S, Kreinovich V, Ginzburg L, Myers DS, Sentz K (2003) Constructing probability boxes and dempster-shafer structures. Tech. rep., Technical report, Sandia National Laboratories

  69. 69.

    Ferson S, Moore DR, Van Den Brink P, Estes T, Gallagher K, Connor R, Verdonck F (2010) Bounding uncertainty analyses. Application of uncertainty analysis to ecological risks of pesticides

  70. 70.

    Ferson S, Siegrist J (2012) Verified computation with probabilities. In: Uncertainty quantification in scientific computing, pp 95–122. Springer

  71. 71.

    Fisher R (1938) Presidential address by professor ra fisher, SC. D., FRS. Indian J Stat 4(1):14–17

    Google Scholar 

  72. 72.

    Fleissner F, Haag T, Hanss M, Eberhard P (2011) Analysis of granular chute flow based on a particle model including uncertainties. Trends in computational contact mechanics pp 121–134

  73. 73.

    Gabriele S, Brancaleoni F, Spina D (2011) Model updating of pescara benchmark: interval versus traditional method. In: Journal of Physics: conference series, vol 305, p 012083. IOP Publishing

  74. 74.

    Gabriele S, Valente C (2009) An interval-based technique for fe model updating. Int J Reliab Saf 3(1–3):79–103

    Article  Google Scholar 

  75. 75.

    Gotz M, Leichsenring F, Graf W, Michael K (2018) Four types of dependencies for fuzzy analysis. In: Proceedings of the 6th European conference on computational mechanics (ECCM). ECCOMAS

  76. 76.

    Govers Y, Haddad Khodaparast H, Link M, Mottershead JE (2015) A comparison of two stochastic model updating methods using the DLR AIRMOD test structure. Mech Syst Signal Process 52–53(1):105–114

    Article  Google Scholar 

  77. 77.

    Graf W, Gotz M, Kaliske M (2015) Analysis of dynamical processes under consideration of polymorphic uncertainty. Struct Saf. 52:194–201. https://doi.org/10.1016/j.strusafe.2014.09.003. http://www.sciencedirect.com/science/article/pii/S0167473014000861. Engineering Analyses with Vague and Imprecise Information

    Article  Google Scholar 

  78. 78.

    Gratiet LL, Marelli S, Sudret B (2016) Metamodel-based sensitivity analysis: polynomial chaos expansions and gaussian processes. Handbook of Uncertainty Quantification, pp 1–37

  79. 79.

    Gull SF (1988) Bayesian inductive inference and maximum entropy. Springer, Berlin, pp 53–74

    Google Scholar 

  80. 80.

    Haag T, González SC, Hanss M (2012) Model validation and selection based on inverse fuzzy arithmetic. Mech Syst Signal Process 32:116–134

    Article  Google Scholar 

  81. 81.

    Haag T, Hanss M (2010) Model assessment using inverse fuzzy arithmetic. Information processing and management of uncertainty in knowledge-based systems. applications, pp 461–470

  82. 82.

    Haag T, Hanss (sup.) M. Moens (cosup.) D, Gaul (cosup.) L (2012) Forward and inverse fuzzy arithmetic for uncertainty analysis with applications to structural mechanics. PhD thesis, Universität Stuttgart

  83. 83.

    Haag T, Herrmann J, Hanss M (2010) Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic. Mech Syst Signal Process 24(7):2021–2034

    Article  Google Scholar 

  84. 84.

    Haddad Khodaparast H, Govers Y, Adhikari S, Link M, Friswell MI, Mottershead JE, Sienz J (2014) Fuzzy model updating and its application to the DLR AIRMOD test structure. In: P. Sas, D. Moens, H. Denayer (eds) Proceedings of the international conference on uncertainty in structural dynamics, USD 2014, pp 4509–4522. KU Leuven, Leuven, Belgium

  85. 85.

    Hansen E, Walster GW (2003) Global optimization using interval analysis: revised and expanded, vol 264. CRC Press, New York

    Google Scholar 

  86. 86.

    Hansen PC (1998) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia

    Google Scholar 

  87. 87.

    Hanss M (2002) The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst 130(3):277–289. https://doi.org/10.1016/S0165-0114(02)00045-3

    MathSciNet  Article  MATH  Google Scholar 

  88. 88.

    Hanss M (2003) An approach to inverse fuzzy arithmetic. In: 22nd International conference of the north American fuzzy information processing society, NAFIPS 2003, pp 474–479. https://doi.org/10.1109/NAFIPS.2003.1226831

  89. 89.

    Hanss M (2003) The extended transformation method for the simulation and analysis of fuzzy-parameterized models. Int J Uncertain Fuzziness Knowl Based Syst 11(06):711–727. https://doi.org/10.1142/S0218488503002491

    MathSciNet  Article  MATH  Google Scholar 

  90. 90.

    Hanss M (2005) Applied fuzzy arithmetic: an introduction with engineering applications. Springer, Berlin

    Google Scholar 

  91. 91.

    Hanss M, Gauger U, Turrin S (2006) Fuzzy arithmetical robustness analysis of mechanical structures with uncertainties. In: International conference on computational structures technology, Gran Canaria, Spain

  92. 92.

    Hanss M, Klimke A (2004) On the reliability of the influence measure in the transformation method of fuzzy arithmetic. Fuzzy Sets Syst 143(3):371–390

    MathSciNet  MATH  Article  Google Scholar 

  93. 93.

    Hanss M, Turrin S (2010) A fuzzy-based approach to comprehensive modeling and analysis of systems with epistemic uncertainties. Struct Saf 32(6):433–441

    Article  Google Scholar 

  94. 94.

    Harvey CR, Zhou G (1990) Bayesian inference in asset pricing tests. J Financ Econ 26(2):221–254

    Article  Google Scholar 

  95. 95.

    Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712. https://doi.org/10.1111/j.1539-6924.1994.tb00281.x

    Article  Google Scholar 

  96. 96.

    Hristopulos DT (2003) Spartan gibbs random field models for geostatistical applications. SIAM J Sci Comput 24(6):2125–2162

    MathSciNet  MATH  Article  Google Scholar 

  97. 97.

    Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  Google Scholar 

  98. 98.

    Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294(5550):2310–2314

    Article  Google Scholar 

  99. 99.

    Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    MathSciNet  MATH  Article  Google Scholar 

  100. 100.

    Imholz M, Vandepitte D, Moens D (2015) Analysis of the effect of uncertain clamping stiffness on the dynamical behaviour of structures using interval field methods. In: Applied mechanics and materials, vol 807, pp 195–204. Trans Tech Publ

  101. 101.

    Imholz M, Vandepitte D, Moens D (2015) Derivation of an input interval field decomposition based on expert knowledge using locally defined basis functions. In: 1st ECCOMAS Thematic conference on international conference on uncertainty quantification in computational sciences and engineering, pp 1–19

  102. 102.

    Imholz M, Vandepitte D, Moens D (2018) Application of interval fields to fit experimental data on deepdrawn components. In: Proceedings of the joint ICVRAM ISUMA UNCERTAINTIES conference (2)

  103. 103.

    Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630. https://doi.org/10.1103/PhysRev.106.620

    MathSciNet  Article  MATH  Google Scholar 

  104. 104.

    Jaynes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108:171–190. https://doi.org/10.1103/PhysRev.108.171

    MathSciNet  Article  MATH  Google Scholar 

  105. 105.

    Jinglai W, Zhen L, Yunqing Z, Nong Z, Liping C (2013) Interval uncertain method for multibody mechanical systems using chebyshev inclusion functions. Int J Numer Methods Eng 95(7):608–630. https://doi.org/10.1002/nme.4525

    MathSciNet  Article  MATH  Google Scholar 

  106. 106.

    Kandel S, McCulloch R, Stambaugh RF (1995) Bayesian inference and portfolio efficiency. Rev Financ Stud 8(1):1–53

    Article  Google Scholar 

  107. 107.

    Katafygiotis LS, Beck JL (1998) Updating models and their uncertainties. II: Model identifiability. J Eng Mech 124(4):463–467

    Article  Google Scholar 

  108. 108.

    Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766. Springer

  109. 109.

    Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B 63(3):425–464

    MathSciNet  MATH  Article  Google Scholar 

  110. 110.

    Khodaparast HH, Mottershead JE, Badcock KJ (2011) Interval model updating with irreducible uncertainty using the Kriging predictor. Mech Syst Signal Process 25(4):1204–1206. https://doi.org/10.1016/j.ymssp.2010.10.009

    Article  Google Scholar 

  111. 111.

    der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112. https://doi.org/10.1016/j.strusafe.2008.06.020

    Article  Google Scholar 

  112. 112.

    Klimke A, Nunes RF, Wohlmuth B (2006) Fuzzy arithmetic based on dimension-adaptive sparse grids: a case study of a large-scale finite element model under uncertain parameters. Int J Uncertian Fuzziness Knowl Based Syst 14(05):561–577. https://doi.org/10.1142/S0218488506004199

    Article  Google Scholar 

  113. 113.

    Kononenko I (1989) Bayesian neural networks. Biol Cybern 61(5):361–370

    Article  Google Scholar 

  114. 114.

    Köylüoglu H, Elishakoff I (1998) A comparison of stochastic and interval finite elements applied to shear frames with uncertain stiffness properties. Comput Struct 67(1–3):91–98. https://doi.org/10.1016/S0045-7949(97)00160-0

    Article  MATH  Google Scholar 

  115. 115.

    Kulpa Z, Pownuk A, Skalna I (1998) Analysis of linear mechanical structures with uncertainties by means of interval methods. Comput Assist Mech Eng Sci 5(4):443–477

    MathSciNet  MATH  Google Scholar 

  116. 116.

    Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt Lasers Eng 47(7–8):747–753. https://doi.org/10.1016/j.optlaseng.2009.03.007

    Article  Google Scholar 

  117. 117.

    Legault J, Langley R, Woodhouse J (2012) Physical consequences of a nonparametric uncertainty model in structural dynamics. J Sound Vib 331(25):5469–5487. https://doi.org/10.1016/j.jsv.2012.07.017

    Article  Google Scholar 

  118. 118.

    Manson G (2005) Calculating frequency response functions for uncertain systems using complex affine analysis. J Sound Vib 288(3):487–521. https://doi.org/10.1016/j.jsv.2005.07.004

    MathSciNet  Article  Google Scholar 

  119. 119.

    de Marsily G, Delay F, Teles V, Schafmeister MT (1998) Some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol J 6(1):115–130. https://doi.org/10.1007/s100400050138

    Article  Google Scholar 

  120. 120.

    Martin JD, Simpson TW (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863. https://doi.org/10.2514/1.8650

    Article  Google Scholar 

  121. 121.

    Marwala T, Mdlazi L, Sibisi S (2007) Finite element model updating using bayesian approach. arXiv preprint arXiv:0705.2515

  122. 122.

    Massa F, Ruffin K, Tison T, Lallemand B (2008) A complete method for efficient fuzzy modal analysis. J Sound Vib 309(1–2):63–85. https://doi.org/10.1016/j.jsv.2007.06.004

    Article  MATH  Google Scholar 

  123. 123.

    Massa F, Tison T, Lallemand B (2006) A fuzzy procedure for the static design of imprecise structures. Comput Methods Appl Mech Eng 195(9–12):925–941. https://doi.org/10.1016/j.cma.2005.02.015

    Article  MATH  Google Scholar 

  124. 124.

    McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

    MathSciNet  Article  MATH  Google Scholar 

  125. 125.

    McDonald DB, Grantham WJ, Tabor WL (2005) Response surface development for global/local optimization using radial basis functions. In: Aiaa 2000-4776. AIAA, Long Beach, CA, USA

  126. 126.

    McWilliam S (2001) Anti-optimisation of uncertain structures using interval analysis. Comput Struct 79(4):421–430. https://doi.org/10.1016/S0045-7949(00)00143-7

    Article  Google Scholar 

  127. 127.

    Mehrez L, Doostan A, Moens D, Vandepitte D (2012) Stochastic identification of composite material properties from limited experimental databases, Part II: Uncertainty modelling. Mech Syst Signal Process 27(1):484–498. https://doi.org/10.1016/j.ymssp.2011.09.001

    Article  Google Scholar 

  128. 128.

    Missoum S, Lacaze S, Amabili M, Alijani F (2017) Identification of material properties of composite sandwich panels under geometric uncertainty. Compos Struct. https://doi.org/10.1016/j.compstruct.2017.07.020

    Article  Google Scholar 

  129. 129.

    Modares M, Venkitaraman S (2015) Reliable condition assessment of structures using hybrid structural measurements and structural uncertainty analyses. Struct Saf 52:202–208

    Article  Google Scholar 

  130. 130.

    Moens D, De Munck M, Desmet W, Vandepitte D (2011) Numerical dynamic analysis of uncertain mechanical structures based on interval fields. In: IUTAM symposium on the vibration analysis of structures with uncertainties, pp 71–83. Springer

  131. 131.

    Moens D, De Munck M, Vandepitte D (2007) Envelope frequency response function analysis of mechanical structures with uncertain modal damping characteristics. Comput Model Eng Sci 22(2):129–149

    MathSciNet  MATH  Google Scholar 

  132. 132.

    Moens D, Hanss M (2011) Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem Anal Des 47(1):4–16. https://doi.org/10.1016/j.finel.2010.07.010

    Article  Google Scholar 

  133. 133.

    Moens D, Vandepitte D (2004) An interval finite element approach for the calculation of envelope frequency respons functions. Int J Numer Methods Eng 61(14):2480–2507

    MATH  Article  Google Scholar 

  134. 134.

    Moens D, Vandepitte D (2006) Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch Comput Methods Eng 13(3):389–464. https://doi.org/10.1007/BF02736398

    MathSciNet  Article  MATH  Google Scholar 

  135. 135.

    Moens D, Vandepitte D (2007) Interval sensitivity theory and its application to frequency response envelope analysis of uncertain structures. Comput Methods Appl Mech Eng 196(21–24):2486–2496. https://doi.org/10.1016/j.cma.2007.01.006

    Article  MATH  Google Scholar 

  136. 136.

    Möller B (2004) Fuzzy randomness-a contribution to imprecise probability. ZAMM J Appl Math Mech 84(10–11):754–764

    MATH  Article  Google Scholar 

  137. 137.

    Möller B, Beer M (2013) Fuzzy randomness: uncertainty in civil engineering and computational mechanics. Springer Science & Business Media, New York

    Google Scholar 

  138. 138.

    Möller B, Beer M, Graf W, Sickert JU (2006) Time-dependent reliability of textile-strengthened RC structures under consideration of fuzzy randomness. Comput Struct 84(8):585–603

    Article  Google Scholar 

  139. 139.

    Möller B, Beer M, Reuter U (2005) Theoretical basics of fuzzy randomness-application to time series with fuzzy data. In: CD Proceedings of 9th international conference on structural safety and reliability ICOSSAR, vol 5

  140. 140.

    Möller B, Graf W, Beer M (2000) Fuzzy structural analysis using alpha-level optimization. Comput Mech 26(6):547–565. https://doi.org/10.1007/s004660000204

    Article  MATH  Google Scholar 

  141. 141.

    Möller B, Graf W, Beer M (2000) Fuzzy structural analysis using α-level optimization. Comput Mech 26(6):547–565

    MATH  Article  Google Scholar 

  142. 142.

    Möller B, Graf W, Beer M (2003) Safety assessment of structures in view of fuzzy randomness. Comput Struct 81(15):1567–1582

    Article  Google Scholar 

  143. 143.

    Monelli D, Mai P (2008) Bayesian inference of kinematic earthquake rupture parameters through fitting of strong motion data. Geophys J Int 173(1):220–232

    Article  Google Scholar 

  144. 144.

    Moore RE (1962) Interval arithmetic and automatic error analysis in digital computing. Ph.D. thesis, Stanford University, Department of Mathematics

  145. 145.

    Moore RE (1979) Methods and applications of interval analysis. SIAM, Philadelphia

    Google Scholar 

  146. 146.

    Moore RT (1966) Interval analysis, vol 4. Prentice Hall, Englewood Cliffs. https://doi.org/10.1016/0016-0032(67)90590-X

    Google Scholar 

  147. 147.

    Mottershead J, Friswell M (1993) Model updating in structural dynamics: a survey. J Sound Vib 167(2):347–375

    MATH  Article  Google Scholar 

  148. 148.

    Muhanna RL, Mullen RL (2001) Uncertanty in mechanics problems- interval based approach. J Eng Mech 127(6):557–566

    Article  Google Scholar 

  149. 149.

    Muhanna RL, Mullen RL, Zhang H (2005) Penalty-based solution for the interval finite-element methods. J Eng Mech 131:1102–1112. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:10(1102)

    Article  Google Scholar 

  150. 150.

    Mullen RLMHZRL (2007) Combined axial and bending stiffness in interval finite-element methods. J Struct Eng 133(12):1700–1709. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1700)

    Article  Google Scholar 

  151. 151.

    Muscolino G, Santoro R, Sofi A (2014) Explicit sensitivities of the response of discretized structures under stationary random processes. Probab Eng Mech 35:82–95

    Article  Google Scholar 

  152. 152.

    Muscolino G, Santoro R, Sofi A (2015) Explicit reliability sensitivities of linear structures with interval uncertainties under stationary stochastic excitation. Struct Saf 52:219–232

    Article  Google Scholar 

  153. 153.

    Muscolino G, Sofi A (2012) Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163. https://doi.org/10.1016/j.probengmech.2011.08.011

    Article  Google Scholar 

  154. 154.

    Muscolino G, Sofi A (2013) Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech Syst Signal Process 37(1):163–181

    Article  Google Scholar 

  155. 155.

    Nicolaï BM, Egea JA, Scheerlinck N, Banga JR, Datta AK (2011) Fuzzy finite element analysis of heat conduction problems with uncertain parameters. J Food Eng 103(1):38–46. https://doi.org/10.1016/j.jfoodeng.2010.09.017

    Article  Google Scholar 

  156. 156.

    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York. https://doi.org/10.1007/b98874

    Google Scholar 

  157. 157.

    Oberkampf W, DeLand S, Rutherford B, Diegert K, Alvin K (1999) A new methodology for the estimation of total uncertainty in computational simulation. In: A new methodology for the estimation of total uncertainty in computational simulation, pp 3061–3083

  158. 158.

    Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57(5):345–384

    Article  Google Scholar 

  159. 159.

    Otto K, Antonsson E (1995) Imprecision in engineering design. ASME J Mech Des 117:25–32

    Article  Google Scholar 

  160. 160.

    Patelli E, Govers Y, Broggi M, Gomes HM, Link M, Mottershead JE (2017) Sensitivity or bayesian model updating: a comparison of techniques using the dlr airmod test data. Arch Appl Mech pp 1–21. https://doi.org/10.1007/s00419-017-1233-1

    Article  Google Scholar 

  161. 161.

    Pota M, Esposito M, Pietro GD (2013) Transforming probability distributions into membership functions of fuzzy classes: a hypothesis test approach. Fuzzy Sets Syst 233:52–73. https://doi.org/10.1016/j.fss.2013.03.013

    MathSciNet  Article  MATH  Google Scholar 

  162. 162.

    Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non- random parameters via interval analysis. Comput Methods Appl Mech Eng 7825(96):361–372

    MATH  Article  Google Scholar 

  163. 163.

    Qiu Z, Wang X (2009) Vertex solution theorem for the upper and lower bounds on the dynamic response of structures with uncertain-but-bounded parameters. Acta Mech Sin 25(3):367–379. https://doi.org/10.1007/s10409-008-0223-5

    Article  MATH  Google Scholar 

  164. 164.

    Rao MR, Mullen RL, Muhanna RL (2011) A new interval finite element formulation with the same accuracy in primary and derived variables. Int J Reliab Saf 5(3/4):336. https://doi.org/10.1504/IJRS.2011.041184

    Article  Google Scholar 

  165. 165.

    Rao S, Berke L (1997) Analysis of uncertain structural systems using interval analysis. AIAA J 35(4):727–735. https://doi.org/10.2514/3.13572

    Article  MATH  Google Scholar 

  166. 166.

    Rao SS, Chen LI (1998) Numerical solution of fuzzy linear equations in engineering analysis. Int J Numer Methods Eng 846(March 1997):829–846

    MathSciNet  MATH  Article  Google Scholar 

  167. 167.

    Rao SS, Sawyer JP (1995) Fuzzy finite element approach for the analysis of imprecisely defined systems. AIAA J 33(12):2364–2370

    MATH  Article  Google Scholar 

  168. 168.

    Rossi PE, Allenby GM (2003) Bayesian statistics and marketing. Mark Sci 22(3):304–328

    Article  Google Scholar 

  169. 169.

    Rupert C, Miller C (2007) An analysis of polynomial chaos approximations for modeling single-fluid-phase flow in porous medium systems. J Comput Phys 226(2):2175–2205. https://doi.org/10.1016/j.jcp.2007.07.001

    MathSciNet  Article  MATH  Google Scholar 

  170. 170.

    Sadeghi J, De Angelis M, Patelli E (2018) Frequentist history matching with interval predictor models. Appl Math Model 61:29–48

    MathSciNet  MATH  Article  Google Scholar 

  171. 171.

    Scionti A, Lardeur P (2006) Experimental and numerical study of the intra/inter variability of an acoustic windscreen. In: Proceedings of the international conference on noise and vibration engineering ISMA 2006, pp 1999–2003. Leuven, Belgium

  172. 172.

    Sentz K, Ferson S (2002) Combination of evidence in Dempster–Shafer theory, vol 4015. Citeseer, New York

    Google Scholar 

  173. 173.

    Serhat Erdogan Y, Gundes Bakir P (2013) Inverse propagation of uncertainties in finite element model updating through use of fuzzy arithmetic. Eng Appl Artif Intell 26(1):357–367. https://doi.org/10.1016/j.engappai.2012.10.003

    Article  MATH  Google Scholar 

  174. 174.

    Shafer G et al (1976) A mathematical theory of evidence, vol 1. Princeton University Press, Princeton

    Google Scholar 

  175. 175.

    Sim J, Qiu Z, Wang X (2007) Modal analysis of structures with uncertain-but-bounded parameters via interval analysis. J Sound Vib 303:29–45. https://doi.org/10.1016/j.jsv.2006.11.038

    Article  Google Scholar 

  176. 176.

    Simoen E, Roeck GD, Lombaert G (2015) Dealing with uncertainty in model updating for damage assessment: a review. Mech Syst Signal Process 56–57:123–149. https://doi.org/10.1016/j.ymssp.2014.11.001

    Article  Google Scholar 

  177. 177.

    Singh P, Deschrijver D, Dhaene T (2013) A balanced sequential design strategy for global surrogate modeling. In: Simulation conference (WSC), 2013 Winter, pp 2172–2179. IEEE

  178. 178.

    Sofi A (2015) Structural response variability under spatially dependent uncertainty: stochastic versus interval model. Probab Eng Mech 42:78–86. https://doi.org/10.1016/j.probengmech.2015.09.001

    Article  Google Scholar 

  179. 179.

    Sofi A, Muscolino G (2015) Static analysis of Euler–Bernoulli beams with interval Young’s modulus. Comput Struct 156:72–82. https://doi.org/10.1016/j.compstruc.2015.04.002

    Article  Google Scholar 

  180. 180.

    Sofi A, Muscolino G, Elishakoff I (2015) Natural frequencies of structures with interval parameters. J Sound Vib 347:79–95. https://doi.org/10.1016/j.jsv.2015.02.037

    Article  MATH  Google Scholar 

  181. 181.

    Sofi A, Muscolino G, Elishakoff I (2015) Static response bounds of Timoshenko beams with spatially varying interval uncertainties. Acta Mech 226(11):3737–3748. https://doi.org/10.1007/s00707-015-1400-9

    MathSciNet  Article  MATH  Google Scholar 

  182. 182.

    Sofi A, Romeo E (2016) A novel interval finite element method based on the improved interval analysis. Comput Methods Appl Mech Eng 311:671–697. https://doi.org/10.1016/j.cma.2016.09.009

    MathSciNet  Article  MATH  Google Scholar 

  183. 183.

    Soize C (2008) Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. Int J Numer Methods Eng 76:1583–1611. https://doi.org/10.1002/nme

    MathSciNet  Article  MATH  Google Scholar 

  184. 184.

    Soize C (2010) Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions. Int J Numer Methods Eng 81(8):939–970. https://doi.org/10.1002/nme.2712

    MathSciNet  Article  MATH  Google Scholar 

  185. 185.

    Soize C (2011) A computational inverse method for identification of non-gaussian random fields using the bayesian approach in very high dimension. Comput Methods Appl Mech Eng 200(45):3083–3099

    MathSciNet  MATH  Article  Google Scholar 

  186. 186.

    Spanos P, Ghanem R (1989) Stochastic finite element expansion for random media. J Eng Mech 115(5):1035–1053

    Article  Google Scholar 

  187. 187.

    Sraj I, Maître OPL, Knio OM, Hoteit I (2016) Coordinate transformation and polynomial chaos for the bayesian inference of a gaussian process with parametrized prior covariance function. Comput Methods Appl Mech Eng 298:205–228. https://doi.org/10.1016/j.cma.2015.10.002

    MathSciNet  Article  MATH  Google Scholar 

  188. 188.

    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051. https://doi.org/10.1016/j.cma.2008.11.007

    Article  MATH  Google Scholar 

  189. 189.

    Stein M, Beer M, Kreinovich V (2013) Bayesian approach for inconsistent information. Inf Sci 245:96–111

    MathSciNet  MATH  Article  Google Scholar 

  190. 190.

    Sudret B (2012) Meta-models for structural reliability and uncertainty quantification. arXiv preprint arXiv:1203.2062

  191. 191.

    Sunaga T (1958) Theory of an interval algebra and its application to numerical analysis. Jpn J Ind Appl Math 26(2):125–143

    MathSciNet  MATH  Google Scholar 

  192. 192.

    Taylor BN, Kuyatt CE (1994) Guidelines for evaluating and expressing the uncertainty of NIST measurement results. US Department of Commerce, Technology Administration, National Institute of Standards and Technology Gaithersburg, MD

  193. 193.

    Teichert WH (1998) Reasons for Uncertainty and their Consequence. In: Proceedings of the 23rd international conference on noise and vibration engineering. ISMA, Leuven, pp 961–966

  194. 194.

    Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriguez EA (2004) Concepts of model verification and validation. Tech. rep., Los Alamos National Lab., Los Alamos, NM

  195. 195.

    Titurus B, Friswell M (2008) Regularization in model updating. Int J Numer Methods Eng 75(4):440–478

    MathSciNet  MATH  Article  Google Scholar 

  196. 196.

    Tonon F, Bernardini A (1998) A random set approach to the optimization of uncertain structures. Comput Struct 68(6):583–600

    MathSciNet  MATH  Article  Google Scholar 

  197. 197.

    Troffaes M, Destercke S (2011) Probability boxes on totally preordered spaces for multivariate modelling. Int J Approx Reason 52(6):767–791. https://doi.org/10.1016/j.ijar.2011.02.001

    Article  MATH  Google Scholar 

  198. 198.

    Turrin S, Hanss M, Selvadurai A (2009) An approach to uncertainty analysis of rockfall simulation. CMES Comput Model Eng Sci 52(3):237–258

    MATH  Google Scholar 

  199. 199.

    Van Der Herten J, Deschrijver D, Dhaene T (2014) Fuzzy local linear approximation-based sequential design. In: IEEE Symposium on computational intelligence for engineering solutions (CIES), 2014, pp 17–21

  200. 200.

    Vandepitte D, Moens D (2011) Quantification of uncertain and variable model parameters in non-deterministic analysis. In: IUTAM symposium on the vibration analysis of structures with uncertainties, vol 27, pp 15–28. Saint Petersburg. https://doi.org/10.1007/978-94-007-0289-9

    Google Scholar 

  201. 201.

    Vanmarcke EH, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech 109(5):1203–1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)

    Article  Google Scholar 

  202. 202.

    Verhaeghe W, Desmet W, Vandepitte D, Joris I, Seuntjens P, Moens D (2011) Application of interval fields for uncertainty modeling in a geohydrological case. In: ECCOMAS thematic conference: COMPDYN 2011: 3rd International conference on computational methods in structural dynamics and earthquake engineering: an IACM special interest conference, programme. Corfu, Greece

  203. 203.

    Verhaeghe W, Desmet W, Vandepitte D, Joris I, Seuntjens P, Moens D (2013) Application of interval fields for uncertainty modeling in a geohydrological case. In: Computational methods in stochastic dynamics, pp 131–147. Springer

  204. 204.

    Verhaeghe W, Desmet W, Vandepitte D, Moens D (2011) Uncertainty assessment in random field representations: an interval approach. In: Annual conference of the north American fuzzy information processing society–NAFIPS, pp 1–6. El Paso, TX. https://doi.org/10.1109/NAFIPS.2011.5752048

  205. 205.

    Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education

  206. 206.

    Walker WE, Harremoës P, Rotmans J, van der Sluijs JP, van Asselt MB, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4(1):5–17

    Article  Google Scholar 

  207. 207.

    Wang C, Qiu Z, Wang X, Wu D (2014) Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters. Finite Elem Anal Des 91:108–114

    Article  Google Scholar 

  208. 208.

    Wang C, Qiu Z, Wang X, Wu D (2014) Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters. Finite Elem Anal Des 91:108–114. https://doi.org/10.1016/j.finel.2014.07.014. http://www.sciencedirect.com/science/article/pii/S0168874X14001553

    Article  Google Scholar 

  209. 209.

    Wang M, Huang Q (2016) A new hybrid uncertain analysis method for structural-acoustic systems with random and interval parameters. Comput Struct 175:15–28. https://doi.org/10.1016/j.compstruc.2016.07.001. http://www.sciencedirect.com/science/article/pii/S0045794916305466

    Article  Google Scholar 

  210. 210.

    Warmus M (1956) Calculus of approximations. Bulletin de l’Academie Polonaise de Sciences 4(5):253–257

    MathSciNet  MATH  Google Scholar 

  211. 211.

    Wasfy TM, Noor AK (2000) Multibody dynamic simulation of the next generation space telescope using finite elements and fuzzy sets. Comput Methods Appl Mech Eng 190(5–7):803–824. https://doi.org/10.1016/S0045-7825(99)00445-4

    Article  MATH  Google Scholar 

  212. 212.

    Weyl H (1934) Elementare Theorie der konvexen Polyeder. Comentarii Mathematici Helvetici 7(1):290–306

    MathSciNet  MATH  Article  Google Scholar 

  213. 213.

    Witteveen JA, Bijl H (2009) Effect of randomness on multi-frequency aeroelastic responses resolved by unsteady adaptive stochastic finite elements. J Comput Phys 228(18):7025–7045. https://doi.org/10.1016/j.jcp.2009.06.013

    Article  MATH  Google Scholar 

  214. 214.

    Wu B, Gao W, Wu D, Song C (2017) Probabilistic interval geometrically nonlinear analysis for structures. Struct Saf 65:100–112. https://doi.org/10.1016/j.strusafe.2017.01.002

    Article  Google Scholar 

  215. 215.

    Wu D, Gao W (2017) Hybrid uncertain static analysis with random and interval fields. Comput Methods Appl Mech Eng 315:222–246. https://doi.org/10.1016/j.cma.2016.10.047

    MathSciNet  Article  MATH  Google Scholar 

  216. 216.

    Xia B, Yu D (2015) Optimization based on reliability and confidence interval design for the structural-acoustic system with interval probabilistic variables. J Sound Vib 336:1–15. https://doi.org/10.1016/j.jsv.2014.10.012

    Article  Google Scholar 

  217. 217.

    Xiao N, Fedele F, Muhanna R (2014) Interval-based parameter identification for structural static problems. arXiv preprint arXiv:1408.3430

  218. 218.

    Xiaojun W, Zhiping Q (2008) Interval finite element analysis of wing flutter. Chin J Aeronaut 21(2):134–140

    Article  Google Scholar 

  219. 219.

    Xu M, Du J, Wang C, Li Y (2017) Hybrid uncertainty propagation in structural-acoustic systems based on the polynomial chaos expansion and dimension-wise analysis. Comput Methods Appl Mech Eng 320:198–217. https://doi.org/10.1016/j.cma.2017.03.026. http://www.sciencedirect.com/science/article/pii/S004578251631461X

    MathSciNet  MATH  Article  Google Scholar 

  220. 220.

    Xu M, Qiu Z (2014) A dimension-wise method for the static analysis of structures with interval parameters. Sci China Phys Mech Astron 57(10):1934–1945. https://doi.org/10.1007/s11433-014-5445-x

    Article  Google Scholar 

  221. 221.

    Yan WJ, Katafygiotis LS (2015) A novel bayesian approach for structural model updating utilizing statistical modal information from multiple setups. Struct Saf 52:260–271. https://doi.org/10.1016/j.strusafe.2014.06.004 Engineering Analyses with Vague and Imprecise Information

    Article  Google Scholar 

  222. 222.

    Yin H, Yu D, Lü H, Yin S, Xia B (2015) Hybrid finite element/statistical energy method for mid-frequency analysis of structure- acoustic systems with interval parameters. J Sound Vib 353:181–204

    Article  Google Scholar 

  223. 223.

    Yu M, Bao H, Ye J, Chi Y (2017) The effect of random porosity field on supercritical carbonation of cement-based materials. Construct Build Mater 146:144–155. https://doi.org/10.1016/j.conbuildmat.2017.04.060

    Article  Google Scholar 

  224. 224.

    Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  225. 225.

    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-III. Inf Sci 9(1):43–80

    MathSciNet  MATH  Article  Google Scholar 

  226. 226.

    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-III. Inf Sci 8(3):199–249

    MathSciNet  MATH  Article  Google Scholar 

  227. 227.

    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-III. Inf Sci 8(4):301–357

    MathSciNet  MATH  Article  Google Scholar 

  228. 228.

    Zadeh LA et al (1975) Calculus of fuzzy restrictions. University of California, Electronics Research Laboratory

    Google Scholar 

  229. 229.

    Zhu H, Zhang L, Xiao T, Li X (2017) Generation of multivariate cross-correlated geotechnical random fields. Comput Geotech 86:95–107. https://doi.org/10.1016/j.compgeo.2017.01.006

    Article  Google Scholar 

  230. 230.

    Zhu Y, Zhang L (2009) Finite element model updating based on least squares support vector machines. Adv Neural Netw 2009:296–303

    Google Scholar 

  231. 231.

    Zienkiewicz OC, Taylor RL, Taylor RL (1977) The finite element method, vol 3. McGraw-hill, London

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Flemish Research Foundation in the context of the research grant HIDIF (High dimensional interval fields) under grant number G0C2218N, as for the post-doctoral research grant 12P3519N of Matthias Faes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Faes.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faes, M., Moens, D. Recent Trends in the Modeling and Quantification of Non-probabilistic Uncertainty. Arch Computat Methods Eng 27, 633–671 (2020). https://doi.org/10.1007/s11831-019-09327-x

Download citation