Review of Robust Aerodynamic Design Optimization for Air Vehicles

  • Zhao Huan
  • Gao Zhenghong
  • Xu Fang
  • Zhang Yidian
Original Paper


The ever-increasing demands for risk-free, resource-efficient and environment-friendly air vehicles motivate the development of advanced design methodology. As a particularly promising design methodology considering uncertainties, robust aerodynamic design optimization (RADO) is capable of providing robust and reliable aerodynamic configuration and reducing cost under probable uncertainties in the flight envelop and all life cycle of air vehicle. However, the major challenges including high computational cost with increasing dimensionality of uncertainty and complex RADO procedure hinder the wider application of RADO. In this paper, the complete RADO procedure, i.e., uncertainty modeling, establishment of uncertainty quantification approach as well as robust optimization subject to reliability constraints under uncertainty, is elaborated. Systematic reviews of RADO methodology including uncertainty modeling methods, comprehensive uncertainty quantification approaches, and robust optimization methods are provided. Further, this paper presents a brief survey of the main applications of RADO in the aerodynamic design of transonic flow and natural-laminar-flow, and discusses the application prospects of RADO methodology for air vehicles. The detailed statement of the paper indicates the intention, i.e., to present the state of the art in RADO methodology, to highlight the key techniques and primary challenges in RADO, and to provide the beneficial directions for future researches.



Lift coefficient


Drag coefficient


Pitching moment coefficient


Pressure coefficient


Mach number of the flow


Reynolds number of the flow


Lift to drag ratio


Angle of attack


Mean aerodynamic chord of the geometry


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Epstein B, Peigin S, Tsach S (2006) A new efficient technology of aerodynamic design based on CFD driven optimization. Aerosp Sci Technol 10(2):100–110zbMATHCrossRefGoogle Scholar
  2. 2.
    Peigin S, Epstein B (2008) Multiconstrained aerodynamic design of business jet by CFD driven optimization tool. Aerosp Sci Technol 12(2):125–134zbMATHCrossRefGoogle Scholar
  3. 3.
    Schulz V, Schillings C (2009) Problem formulations and treatment of uncertainties in aerodynamic design. AIAA J 47(3):646–654CrossRefGoogle Scholar
  4. 4.
    Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47(6):450–479CrossRefGoogle Scholar
  5. 5.
    Zang TA, Hemsch MJ, Hilburger MW, Kenny SP, Luckring JM, Maghami P, Padula SL, Stroud WJ (2002) Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles. NASA/TM-2002-211462. NASA Langley Research CenterGoogle Scholar
  6. 6.
    Hicks RM, Cliff SE (1991) An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers. NASA TM-102840Google Scholar
  7. 7.
    Driver J, Zingg DW (2007) Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction. AIAA J 45(8):1810–1818CrossRefGoogle Scholar
  8. 8.
    Huyse L, Padula SL, Lewis RM, Li W (2002) Probabilistic approach to free-form airfoil shape optimization under uncertainty. AIAA J 40(9):1764–1772CrossRefGoogle Scholar
  9. 9.
    Padula S, Gumbert C, Li W (2003) Aerospace applications of optimization under uncertainity. In: Fourth international symposium on uncertainty modeling and analysis, 2003. ISUMA 2003. IEEE, pp 286–291Google Scholar
  10. 10.
    Luc H (2001) Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies. NASA Langley Research Center, NASA/CR-2001-211020Google Scholar
  11. 11.
    Huyse L, Lewis RM (2001) Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions. NASA/CR-2001-210648. Langley Research CenterGoogle Scholar
  12. 12.
    Li W, Hyuse L, Padula S (2001) Robust airfoil optimization to achieve consistent drag reduction over a Mach range. NASA/CR-2001-211042. NASA Langley Research CenterGoogle Scholar
  13. 13.
    Padula S, Li W (2002) Options for robust airfoil optimization under uncertainty. In: 9th AIAA multidisciplinary analysis and optimization symposium, pp 4–6Google Scholar
  14. 14.
    Nemec M, Zingg DW, Pulliam TH (2004) Multipoint and multi-objective aerodynamic shape optimization. AIAA J 42(6):1057–1065CrossRefGoogle Scholar
  15. 15.
    Ledoux ST, Vassberg JC, Young DP, Fugal S, Kamenetskiy D, Huffman WP, Melvin RG, Smith MF (2015) Study based on the AIAA aerodynamic design optimization discussion group test cases. AIAA J 53(7):1–26CrossRefGoogle Scholar
  16. 16.
    Zingg DW, Elias S (2015) Aerodynamic optimization under a range of operating conditions. AIAA J 44(44):2787–2792Google Scholar
  17. 17.
    Sang WL, Kwon OJ (2015) Robust airfoil shape optimization using design for six sigma. J Aircr 43(3):843–846Google Scholar
  18. 18.
    Li W (2003) Profile optimization method for robust airfoil shape optimization in viscous flow. NASA/TM-2003-212408. NASA Langley Research CenterGoogle Scholar
  19. 19.
    Taguchi G, Chowdhury S, Taguchi S (2000) Robust engineering. McGraw-Hill, LondonzbMATHGoogle Scholar
  20. 20.
    Huang B, Du X (2007) Analytical robustness assessment for robust design. Struct Multidiscipl Optim 34(2):123–137CrossRefGoogle Scholar
  21. 21.
    Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44(1):181–191CrossRefGoogle Scholar
  22. 22.
    Du X, Chen W (2000) Towards a better understanding of modeling feasibility robustness in engineering design. J Mech Des 122(4):385–394CrossRefGoogle Scholar
  23. 23.
    Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp Sci Technol 68:530–542CrossRefGoogle Scholar
  24. 24.
    Zhao H, Gao Z, Wang C, Yuan G (2017) Robust design of high speed natural-laminar-flow airfoil for high lift. In: 55th AIAA aerospace sciences meeting, p 1414Google Scholar
  25. 25.
    Shah H, Hosder S, Koziel S, Tesfahunegn YA, Leifsson L (2015) Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerosp Sci Technol 45:17–29CrossRefGoogle Scholar
  26. 26.
    Gumbert C, Newman P, Hou G (2002) Effect of random geometric uncertainty on the computational design of a 3-D flexible wing. In: 20th AIAA applied aerodynamics conference, p 2806Google Scholar
  27. 27.
    Padulo M, Maginot J, Guenov M, Holden C (2009) Airfoil design under uncertainty with robust geometric parameterization. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 17th AIAA/ASME/AHS adaptive structures conference 11th AIAA No, p 2270Google Scholar
  28. 28.
    Duvigneau R (2007) Robust design of a transonic wing with uncertain Mach number. In: Evolutionary methods for design, optimization and control, Barcelona, SpainGoogle Scholar
  29. 29.
    Mathelin L, Hussaini MY, Zang TA (2005) Stochastic approaches to uncertainty quantification in CFD simulations. Numer Algorithms 38(1–3):209–236MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zhang Y, Hosder S, Leifsson L, Koziel S (2012) Robust airfoil optimization under inherent and model-form uncertainties using stochastic expansions. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, pp 2012–2056Google Scholar
  31. 31.
    Lian Y, Kim NH (2006) Reliability-based design optimization of a transonic compressor. AIAA J 44(2):368–375CrossRefGoogle Scholar
  32. 32.
    Ahn J, Kim S, Kwon JH (2005) Reliability-based wing design optimization using trust region-sequential quadratic programming framework. J Aircr 42(5):1331–1336CrossRefGoogle Scholar
  33. 33.
    Schuëller GI, Jensen HA (2008) Computational methods in optimization considering uncertainties—an overview. Comput Methods Appl Mech Eng 198(1):2–13zbMATHCrossRefGoogle Scholar
  34. 34.
    Wang X, Hirsch C, Liu Z, Kang S, Lacor C (2013) Uncertainty-based robust aerodynamic optimization of rotor blades. Int J Numer Methods Eng 94(2):111–127zbMATHCrossRefGoogle Scholar
  35. 35.
    Tang Z, Périaux J (2012) Uncertainty based robust optimization method for drag minimization problems in aerodynamics. Comput Methods Appl Mech Eng 217:12–24MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Paiva RM, Crawford C, Suleman A (2014) Robust and reliability-based design optimization framework for wing design. AIAA J 52(4):711–724CrossRefGoogle Scholar
  37. 37.
    Papadimitriou D, Papadimitriou C (2014) Robust reliability-based aerodynamic shape optimization. Eng Optim 2014:353Google Scholar
  38. 38.
    Papadimitriou DI, Papadimitriou C (2016) Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerosp Sci Technol 55:24–33CrossRefGoogle Scholar
  39. 39.
    Zhao H, Gao Z, Gao Y (2017) Design optimization of natural-laminar-flow airfoil for complicated flight conditions. In: 35th AIAA applied aerodynamics conference. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, p 3060Google Scholar
  40. 40.
    Jaeger L, Gogu C, Segonds S, Bes C (2013) Aircraft multidisciplinary design optimization under both model and design variables uncertainty. J Aircr 50(2):528–538CrossRefGoogle Scholar
  41. 41.
    Nikbay M, Kuru MN (2013) Reliability based multidisciplinary optimization of aeroelastic systems with structural and aerodynamic uncertainties. J Aircr 50(3):708–715CrossRefGoogle Scholar
  42. 42.
    Kalsi M, Hacke K, Lewis K (2001) A comprehensive robust design approach for decision trade-offs in complex systems design. J Mech Des 123(123):1–10CrossRefGoogle Scholar
  43. 43.
    Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Gregory IM, Tierno JE (2004) A new approach to aircraft robust performance analysis. AIAA-96-3860. NASA Langley Research CenterGoogle Scholar
  45. 45.
    Padula SL, Gumbert CR, Li W (2006) Aerospace applications of optimization under uncertainty. Optim Eng 7(3):317–328MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Green LL, Lin H-Z, Khalessi MR (2002) Probabilistic methods for uncertainty propagation applied to aircraft design. In: 20th AIAA applied aerodynamics conferences, p 3140Google Scholar
  47. 47.
    Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, PrenticeGoogle Scholar
  48. 48.
    Nair VN, Abraham B, MacKay J, Box G, Kacker RN, Lorenzen TJ, Lucas JM, Myers RH, Vining GG, Nelder JA (1992) Taguchi’s parameter design: a panel discussion. Technometrics 34(2):127–161MathSciNetCrossRefGoogle Scholar
  49. 49.
    d’Entremont K, Ragsdell K (1988) Design for latitude using TOPT. In: ASME advances in design automation, DE, pp 265–272Google Scholar
  50. 50.
    Kulfan BM (2008) Universal parametric geometry representation method. J Aircr 45(1):142–158CrossRefGoogle Scholar
  51. 51.
    Sobieczky H (1999) Parametric airfoils and wings. Recent development of aerodynamic design methodologies. Springer, Berlin, pp 71–87CrossRefGoogle Scholar
  52. 52.
    Masters DA, Taylor NJ, Rendall TCS, Allen CB, Poole DJ (2017) Geometric comparison of aerofoil shape parameterization methods. AIAA J 55(5):1575–1589CrossRefGoogle Scholar
  53. 53.
    Rendall T, Allen C (2008) Unified fluid–structure interpolation and mesh motion using radial basis functions. Int J Numer Methods Eng 74(10):1519–1559MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Samareh JA (2001) Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization. AIAA J 39(5):877–884CrossRefGoogle Scholar
  55. 55.
    Mattson C, Messac A (2003) Handling equality constraints in robust design optimization. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, pp 3464–3473Google Scholar
  56. 56.
    Zhao K, Gao ZH, Huang JT, Li Q (2016) Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method. Chin J Aeronaut 29(6):1541–1552CrossRefGoogle Scholar
  57. 57.
    Gunawan S, Azarm S (2005) Multi-objective robust optimization using a sensitivity region concept. Struct Multidiscipl Optim 29(1):50–60CrossRefGoogle Scholar
  58. 58.
    Gaspar-Cunha A, Covas JA (2008) Robustness in multi-objective optimization using evolutionary algorithms. Comput Optim Appl 39(1):75–96MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Arias-Montano A, Coello Coello C, Mezura-Montes E (2011) Evolutionary algorithms applied to multi-objective aerodynamic shape optimization. Computational optimization, methods and algorithms. Springer, Berlin, pp 211–240zbMATHCrossRefGoogle Scholar
  60. 60.
    Jin Y, Sendhoff B (2003) Trade-off between performance and robustness: an evolutionary multiobjective approach. Lect Notes Comput Sci 2632:237–251zbMATHCrossRefGoogle Scholar
  61. 61.
    Guo J, Du X (2012) Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J 45(9):2337–2349CrossRefGoogle Scholar
  62. 62.
    Oberkampf WL, Ferson S (2007) Model validation under both aleatory and epistemic uncertainty. SAND2007-7163C. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)Google Scholar
  63. 63.
    Swiler LP, Giunta AA (2007) Aleatory and epistemic uncertainty quantification for engineering applications. SAND20076-2670C. In: Proceedings of the joint statistical meetings. American Statistical AssociationGoogle Scholar
  64. 64.
    Dobronets BS, Popova OA (2014) Numerical probabilistic analysis under aleatory and epistemic uncertainty. Reliab Comput 19(3):274–289MathSciNetGoogle Scholar
  65. 65.
    Borgonovo E, Peccati L (2007) On the quantification and decomposition of uncertainty. Uncertainty and risk. Springer, Berlin, pp 41–59CrossRefGoogle Scholar
  66. 66.
    Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1–3):281–294CrossRefGoogle Scholar
  67. 67.
    Sankararaman S, Mahadevan S (2011) Model validation under epistemic uncertainty. Reliab Eng Syst Saf 96(9):1232–1241CrossRefGoogle Scholar
  68. 68.
    Mahadevan S, Rebba R (2006) Inclusion of model errors in reliability-based optimization. J Mech Des 128(4):936–944CrossRefGoogle Scholar
  69. 69.
    Xu F, Gao Z, Ming X, Xia L, Wang Y, Sun W, Ma R (2015) The optimization for the backward-facing step flow control with synthetic jet based on experiment. Exp Therm Fluid Sci 64:94–107CrossRefGoogle Scholar
  70. 70.
    Ob WL, DeLand SM, Rutherford BM, Diegert KV, Alvin KF (2000) Estimation of total uncertainty in modeling and simulation. Sandia report SAND2000-0824, Albuquerque, NMGoogle Scholar
  71. 71.
    Newman PA, Green LL (2002) Approach for input uncertainty propagation and robust design in CFD using sensitivity derivatives. J Fluids Eng 124(1):60–69CrossRefGoogle Scholar
  72. 72.
    Ong YS, Zhou Z, Lim D (2006) Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 2928–2935Google Scholar
  73. 73.
    Zhang S, Zhu P, Chen W, Arendt P (2013) Concurrent treatment of parametric uncertainty and metamodeling uncertainty in robust design. Struct Multidiscipl Optim 47(1):63–76MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Helton JC, Johnson JD, Oberkampf WL (2004) An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliab Eng Syst Saf 85(1–3):39–71CrossRefGoogle Scholar
  75. 75.
    Feller W (2008) An introduction to probability theory and its applications, vol 2. Wiley, LondonzbMATHGoogle Scholar
  76. 76.
    Croicu A-M, Hussaini MY, Jameson A, Klopfer G (2012) Robust airfoil optimization using maximum expected value and expected maximum value approaches. AIAA J 50(9):1905–1919CrossRefGoogle Scholar
  77. 77.
    Liem RP, Martins JRRA, Kenway GKW (2017) Expected drag minimization for aerodynamic design optimization based on aircraft operational data. Aerosp Sci Technol 63:344–362CrossRefGoogle Scholar
  78. 78.
    Cook LW, Jarrett JP (2017) Robust airfoil optimization and the importance of appropriately representing uncertainty. AIAA J 55(11):3925–3939CrossRefGoogle Scholar
  79. 79.
    Yager R, Fedrizzi M, Kacprzyk J (1994) Advances in the Dempster–Shafer theory of evidence. Wiley, New YorkzbMATHGoogle Scholar
  80. 80.
    Inglis J (1976) A mathematical theory of evidence. Technometrics 20(1):242Google Scholar
  81. 81.
    Shah H, Hosder S, Winter T (2015) Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions. Reliab Eng Syst Saf 138:59–72CrossRefGoogle Scholar
  82. 82.
    Dempster AP (1968) A generalization of Bayesian inference. J R Stat Soc 30(2):205–247MathSciNetzbMATHGoogle Scholar
  83. 83.
    Sentz K, Ferson S (2002) Combination of evidence in Dempster–Shafer theory. Contemp Pac 11(2):416–426Google Scholar
  84. 84.
    Florea MC, Jousselme AL, Grenier D (2009) Robust combination rules for evidence theory. Inf Fusion 10(2):183–197CrossRefGoogle Scholar
  85. 85.
    Eldred MS, Swiler LP, Tang G (2011) Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab Eng Syst Saf 96(9):1092–1113CrossRefGoogle Scholar
  86. 86.
    Shimoyama K, Oyama A, Fujii K (2007) Multi-objective six sigma approach applied to robust airfoil design for Mars airplane. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2007. Structures, structural dynamics, and materials and co-located conferences. AIAA, p 1966Google Scholar
  87. 87.
    Lurati L (2008) Robust airfoil design under uncertain operation conditions using stochastic collocation. In: 46th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, p 135Google Scholar
  88. 88.
    Tzvieli A (1988) Possibility theory: an approach to computerized processing of uncertainty. J Assoc Inf Sci Technol 41(2):153–154Google Scholar
  89. 89.
    Gupta MM (1992) Fuzzy set theory and its applications. Fuzzy Sets Syst 47(3):396–397CrossRefGoogle Scholar
  90. 90.
    Neumaier A (2008) Interval methods for systems of equation. Cambridge University Press, New YorkGoogle Scholar
  91. 91.
    Pan Y, Huang J, Li F, Yan C (2017) Aerodynamic robust optimization of flying wing aircraft based on interval method. Aircr Eng Aerosp Technol 89(3):491–497CrossRefGoogle Scholar
  92. 92.
    Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, LondonzbMATHGoogle Scholar
  93. 93.
    Oberguggenberger M, King J, Schmelzer B (2009) Classical and imprecise probability methods for sensitivity analysis in engineering: a case study. Int J Approx Reason 50(4):680–693CrossRefGoogle Scholar
  94. 94.
    Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, LondonzbMATHGoogle Scholar
  95. 95.
    Zhou X, Lin H (2008) Local sensitivity analysis. Springer, BerlinCrossRefGoogle Scholar
  96. 96.
    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979CrossRefGoogle Scholar
  97. 97.
    Helton JC (1993) Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab Eng Syst Saf 42(2–3):327–367CrossRefGoogle Scholar
  98. 98.
    Sobol′ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Saltelli A, Tarantola S, Chan KP-S (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56CrossRefGoogle Scholar
  100. 100.
    Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174CrossRefGoogle Scholar
  101. 101.
    Turányi T (1990) Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 5(3):203–248MathSciNetCrossRefGoogle Scholar
  102. 102.
    Buzzard GT (2012) Global sensitivity analysis using sparse grid interpolation and polynomial chaos. Reliab Eng Syst Saf 107(4):82–89CrossRefGoogle Scholar
  103. 103.
    Crestaux T, MaıˆTre OL, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172CrossRefGoogle Scholar
  104. 104.
    Xiao S, Lu Z, Xu L (2016) A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty. Reliab Eng Syst Saf 156:1–14CrossRefGoogle Scholar
  105. 105.
    Bae H-R, Grandhi R, Canfield R (2006) Sensitivity analysis of structural response uncertainty propagation using evidence theory. Struct Multidiscipl Optim 31(4):270–279CrossRefGoogle Scholar
  106. 106.
    Oberkampf W, Helton JC (2002) Investigation of evidence theory for engineering applications. In: AIAA non-deterministic approaches forum, p 1569Google Scholar
  107. 107.
    Helton JC, Johnson JD, Oberkampf W, Sallaberry CJ (2006) Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliab Eng Syst Saf 91(10):1414–1434CrossRefGoogle Scholar
  108. 108.
    Li G, Lu Z, Lu Z, Xu J (2014) Regional sensitivity analysis of aleatory and epistemic uncertainties on failure probability. Mech Syst Signal Process 46(2):209–226CrossRefGoogle Scholar
  109. 109.
    Hu W, Li M, Azarm S, Almansoori A (2011) Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts. J Mech Des 133(6):061002–061010CrossRefGoogle Scholar
  110. 110.
    Du X, Venigella PK, Liu D (2009) Robust mechanism synthesis with random and interval variables. Mech Mach Theory 44(7):1321–1337zbMATHCrossRefGoogle Scholar
  111. 111.
    Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. J Mech Des 126(4):562–570CrossRefGoogle Scholar
  112. 112.
    Du X (2012) Reliability-based design optimization with dependent interval variables. Int J Numer Methods Eng 91(2):218–228MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainties in applied mechanics. Elsevier Science, AmsterdamzbMATHGoogle Scholar
  114. 114.
    Du X, Sudjianto A, Huang B (2005) Reliability-based design with the mixture of random and interval variables. J Mech Des 127(6):1068–1076CrossRefGoogle Scholar
  115. 115.
    Guo J, Du X (2009) Reliability sensitivity analysis with random and interval variables. Int J Numer Methods Eng 78(13):1585–1617MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Elishakoff I, Colombi P (1993) Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Comput Methods Appl Mech Eng 104(2):187–209MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Jiang C, Han X, Li W, Liu J, Zhang Z (2012) A hybrid reliability approach based on probability and interval for uncertain structures. J Mech Des 134(3):031001–031011CrossRefGoogle Scholar
  118. 118.
    Guo J, Du X (2010) Reliability analysis for multidisciplinary systems with random and interval variables. AIAA J 48(1):82–91CrossRefGoogle Scholar
  119. 119.
    Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Goel L, Liang X, Ou Y (1999) Monte Carlo simulation-based customer service reliability assessment. Electr Power Syst Res 49(3):185–194CrossRefGoogle Scholar
  121. 121.
    Kim NH, Wang H, Queipo NV (2006) Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA J 44(5):1112–1116CrossRefGoogle Scholar
  122. 122.
    Lee SH, Chen W (2008) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscipl Optim 37(3):239–253CrossRefGoogle Scholar
  123. 123.
    Du X, Zhang Y (2010) An approximation approach to general robustness assessment for multidisciplinary systems. J Comput Inf Sci Eng 10(1):011003–011009CrossRefGoogle Scholar
  124. 124.
    Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91(10–11):1175–1209CrossRefGoogle Scholar
  125. 125.
    Robert CP (2004) Monte Carlo methods. Wiley, LondonzbMATHGoogle Scholar
  126. 126.
    Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1939Google Scholar
  127. 127.
    Janssen H (2013) Monte-Carlo based uncertainty analysis: sampling efficiency and sampling convergence. Reliab Eng Syst Saf 109:123–132CrossRefGoogle Scholar
  128. 128.
    Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81(1):23–69CrossRefGoogle Scholar
  129. 129.
    Saliby E (1990) Descriptive sampling: a better approach to Monte Carlo simulation. J Oper Res Soc 41:1133–1142CrossRefGoogle Scholar
  130. 130.
    Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 191(32):3491–3507zbMATHCrossRefGoogle Scholar
  131. 131.
    Hammersley JM (1960) Monte carlo methods for solving multivariable problems. Ann N Y Acad Sci 86(3):844–874MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245MathSciNetzbMATHGoogle Scholar
  133. 133.
    Owen A (1997) Monte Carlo variance of scrambled equidistribution quadriture. SIAM J Numer Anal 34(5):1884–1910MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Manteufel R (2000) Evaluating the convergence of Latin Hypercube Sampling. In: 41st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference and exhibit, p 1636Google Scholar
  135. 135.
    Stocki R (2005) A method to improve design reliability using optimal Latin hypercube sampling. Comput Assist Mech Eng Sci 12(4):393Google Scholar
  136. 136.
    Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plan Inference 26(2):131–148MathSciNetCrossRefGoogle Scholar
  137. 137.
    Rajabi MM, Ataie-Ashtiani B, Janssen H (2015) Efficiency enhancement of optimized Latin hypercube sampling strategies: application to Monte Carlo uncertainty analysis and meta-modeling. Adv Water Resour 76:127–139CrossRefGoogle Scholar
  138. 138.
    Saliby E (1997) Descriptive sampling: an improvement over latin hypercube sampling. In: Proceedings of the simulation conference, 1997, pp 230–233Google Scholar
  139. 139.
    Saliby E, Pacheco F (2002) An empirical evaluation of sampling methods in risk analysis simulation: quasi-Monte Carlo, descriptive sampling, and Latin hypercube sampling. In: Proceedings of the winter simulation conference, 2002. IEEE, pp 1606–1610Google Scholar
  140. 140.
    Tari M, Dahmani A (2006) Refined descriptive sampling: a better approach to Monte Carlo simulation. Simul Model Pract Theory 14(2):143–160CrossRefGoogle Scholar
  141. 141.
    Morio J (2010) Importance sampling: how to approach the optimal density? Eur J Phys 31(2):L41–L48zbMATHCrossRefGoogle Scholar
  142. 142.
    Schuëller GI, Stix R (1987) A critical appraisal of methods to determine failure probabilities. Struct Saf 4(4):293–309CrossRefGoogle Scholar
  143. 143.
    Dawson R, Hall J (2006) Adaptive importance sampling for risk analysis of complex infrastructure systems. Proc Math Phys Eng Sci 462(2075):3343–3362zbMATHCrossRefGoogle Scholar
  144. 144.
    Ang GL, Ang HS, Tang WH (1992) Optimal importance-sampling density estimator. J Eng Mech 118(6):1146–1163CrossRefGoogle Scholar
  145. 145.
    Hinrichs A (2010) Optimal importance sampling for the approximation of integrals. J Complex 26(2):125–134MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Jiang G, Xu C, Fu MC (2016) On sample average approximation algorithms for determining the optimal importance sampling parameters in pricing financial derivatives on Lévy processes. Oper Res Lett 44(1):44–49MathSciNetCrossRefGoogle Scholar
  147. 147.
    Deng LY (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. Technometrics 48(1):147–148CrossRefGoogle Scholar
  148. 148.
    Liu JS, Chen R, Logvinenko T (2001) A theoretical framework for sequential importance sampling with resampling. In: Doucet A, de Freitas N, Gordon N (eds) Sequential Monte Carlo methods in practice. Statistics for engineering and information science. Springer, New York, pp 225–246CrossRefGoogle Scholar
  149. 149.
    Reichert P, Schervish M, Small MJ (2002) An efficient sampling technique for Bayesian inference with computationally demanding models. Technometrics 44(4):318–327MathSciNetCrossRefGoogle Scholar
  150. 150.
    Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2(1):84–90MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Lau RWH (1995) An adaptive supersampling method. In: International computer science conference on image applications and computer graphics. Springer, Berlin, pp 205–214Google Scholar
  152. 152.
    Niederreiter H (1992) Random number generation and quasi-monte carlo methods. J Am Stat Assoc 88(89):147–153zbMATHGoogle Scholar
  153. 153.
    Moskowitz B, Caflisch RE (1996) Smoothness and dimension reduction in quasi-Monte Carlo methods. Math Comput Model 23(8–9):37–54MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Lee SW, Kwon OJ (2006) Robust airfoil shape optimization using design for six sigma. J Aircr 43(3):843–846CrossRefGoogle Scholar
  155. 155.
    Keane AJ (2012) Cokriging for robust design optimization. AIAA J 50(11):2351–2364CrossRefGoogle Scholar
  156. 156.
    Chatterjee T, Chakraborty S, Chowdhury R (2017) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng. CrossRefGoogle Scholar
  157. 157.
    Lee SH, Chen W, Kwak BM (2009) Robust design with arbitrary distributions using Gauss-type quadrature formula. Struct Multidiscipl Optim 39(39):227–243MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Taguchi G (1978) Performance analysis design. Int J Prod Res 16(6):521–530CrossRefGoogle Scholar
  159. 159.
    D’Errico JR, Zaino NA (1988) Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30(4):397–405CrossRefGoogle Scholar
  160. 160.
    Huang B, Du X (2006) A robust design method using variable transformation and Gauss–Hermite integration. Int J Numer Methods Eng 66(12):1841–1858MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Prob Eng Mech 19(4):393–408CrossRefGoogle Scholar
  163. 163.
    Smoljak SA (1963) Quadrature and interpolation formulae on tensor products of certain function classes. Dokl Akad Nauk SSSR 4(5):240–243MathSciNetGoogle Scholar
  164. 164.
    Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18(3):209–232MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Padulo M, Campobasso MS, Guenov MD (2011) Novel uncertainty propagation method for robust aerodynamic design. AIAA J 49(3):530–543CrossRefGoogle Scholar
  166. 166.
    Padulo M, Campobasso MS, Guenov MD (2007) Comparative analysis of uncertainty propagation methods for robust engineering design. In: International conference on engineering design, ICED07, Paris, France, pp 1–12Google Scholar
  167. 167.
    Xu H, Rahman S (2004) A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int J Numer Methods Eng 61(12):1992–2019zbMATHCrossRefGoogle Scholar
  168. 168.
    Griebel M, Schneider M, Zenger C (1992) A combination technique for the solution of sparse grid problems. In: de Groen P, Beauwens R (eds) Iterative methods in linear algebra. Elsevier, AmsterdamGoogle Scholar
  169. 169.
    Balakrishnan N (2006) Continuous multivariate distributions. Wiley, LondonCrossRefGoogle Scholar
  170. 170.
    Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. J Mech Des 115(1):74–80CrossRefGoogle Scholar
  171. 171.
    Asafuddoula M, Singh HK, Ray T (2015) Six-sigma robust design optimization using a many-objective decomposition-based evolutionary algorithm. IEEE Trans Evolut Comput 19(4):490–507CrossRefGoogle Scholar
  172. 172.
    Kamran A, Guozhu L, Rafique AF, Zeeshan Q (2013) ±3-Sigma based design optimization of 3D finocyl grain. Aerosp Sci Technol 26(1):29–37CrossRefGoogle Scholar
  173. 173.
    Mandur J, Budman H (2012) A polynomial-chaos based algorithm for robust optimization in the presence of Bayesian uncertainty. IFAC Proc 45(15):549–554CrossRefGoogle Scholar
  174. 174.
    Eldred M, Burkardt J (2009) Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition 976, 1–20Google Scholar
  175. 175.
    Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Cameron RH, Martin WT (1947) The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann Math 48(2):385–392MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    Shimoyama K, Inoue A (2016) Uncertainty quantification by the nonintrusive polynomial chaos expansion with an adjustment strategy. AIAA J 54(10):3107–3116CrossRefGoogle Scholar
  178. 178.
    Congedo PM, Abgrall R, Geraci G (2011) On the use of the sparse grid techniques coupled with polynomial chaos. INRIAGoogle Scholar
  179. 179.
    Winokur JG (2015) Adaptive sparse grid approaches to polynomial chaos expansions for uncertainty quantification. Duke UniversityGoogle Scholar
  180. 180.
    Perko Z, Gilli L, Lathouwers D, Kloosterman JL (2014) Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis. J Comput Phys 260:54–84MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Najm HN (2009) Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu Rev Fluid Mech 41:35–52MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Hosder S, Walters RW, Perez R (2006) A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, p 891Google Scholar
  183. 183.
    Dodson M, Parks GT (2015) Robust aerodynamic design optimization using polynomial chaos. J Aircr 46(2):635–646CrossRefGoogle Scholar
  184. 184.
    Xiong F, Xue B, Yan Z, Yang S (2011) Polynomial chaos expansion based robust design optimization. In: International conference on quality, reliability, risk, maintenance, and safety engineering, pp 868–873Google Scholar
  185. 185.
    Hampton J, Doostan A (2015) Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression. Comput Methods Appl Mech Eng 290:73–97MathSciNetzbMATHCrossRefGoogle Scholar
  186. 186.
    Hampton J, Doostan A (2015) Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies. J Comput Phys 280:363–386MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Yang X, Lei H, Baker NA, Lin G (2016) Enhancing sparsity of Hermite polynomial expansions by iterative rotations. J Comput Phys 307:94–109MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Jakeman JD, Eldred MS, Sargsyan K (2015) Enhancing l(1)-minimization estimates of polynomial chaos expansions using basis selection. J Comput Phys 289:18–34MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    Peng J, Hampton J, Doostan A (2014) A weighted ℓ1-minimization approach for sparse polynomial chaos expansions. J Comput Phys 267:92–111MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    Peng J, Hampton J, Doostan A (2016) On polynomial chaos expansion via gradient-enhanced ℓ 1-minimization. J Comput Phys 310:440–458MathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Prob Eng Mech 25(2):183–197CrossRefGoogle Scholar
  193. 193.
    Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDEs with stochastic inputs. J Comput Phys 230(8):3015–3034MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    Eldred MS Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 17th AIAA/ASME/AHS adaptive structures conference 11th AIAA no, p 2274Google Scholar
  195. 195.
    Ankenman B, Nelson BL, Staum J (2010) Stochastic kriging for simulation metamodeling. Oper Res 58(2):371–382MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    Jung DH, Lee BC (2002) Development of a simple and efficient method for robust optimization. Int J Numer Methods Eng 53(9):2201–2215MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Kiureghian AD, Stefano MD (1991) Efficient algorithm for second-order reliability analysis. J Eng Mechanics 117(12):2904–2923CrossRefGoogle Scholar
  198. 198.
    Rackwitz R, Flessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494zbMATHCrossRefGoogle Scholar
  199. 199.
    Madsen HO, Krenk S, Lind NC (1986) Methods of structural safety. Prentice-Hall, Englewood CliffsGoogle Scholar
  200. 200.
    Der Kiureghian A (2005) First-and second-order reliability methods. Engineering design reliability handbook, 14Google Scholar
  201. 201.
    Morokoff WJ, Caflisch RE (1995) Quasi-Monte Carlo integration. J Comput Phys 122(2):218–230MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Laurent L, Le Riche R, Soulier B, Boucard P-A (2017) An overview of gradient-enhanced metamodels with applications. Arch Comput Methods Eng. CrossRefGoogle Scholar
  203. 203.
    Papadimitriou DI, Giannakoglou KC (2013) Third-order sensitivity analysis for robust aerodynamic design using continuous adjoint. Int J Numer Methods Fluids 71(5):652–670MathSciNetCrossRefGoogle Scholar
  204. 204.
    Huang ZL, Jiang C, Zhou YS, Zheng J, Long XY (2017) Reliability-based design optimization for problems with interval distribution parameters. Struct Multidiscipl Optim 55(2):513–528MathSciNetCrossRefGoogle Scholar
  205. 205.
    Tipireddy R, Ghanem R (2014) Basis adaptation in homogeneous chaos spaces. J Comput Phys 259:304–317MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Li H-S, Ma C (2012) Hybrid dimension-reduction method for robust design optimization. AIAA J 51(1):138–144CrossRefGoogle Scholar
  207. 207.
    Constantine PG (2015) Active subspaces: emerging ideas for dimension reduction in parameter studies. SIAM, PhiladelphiazbMATHCrossRefGoogle Scholar
  208. 208.
    Du X, Chen W (2002) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):871–880Google Scholar
  209. 209.
    Huang Z, Jiang C, Zhou Y, Luo Z, Zhang Z (2016) An incremental shifting vector approach for reliability-based design optimization. Struct Multidiscipl Optim 53(3):523–543MathSciNetCrossRefGoogle Scholar
  210. 210.
    Chiandussi G, Codegone M, Ferrero S, Varesio FE (2012) Comparison of multi-objective optimization methodologies for engineering applications. Comput Math Appl 63(5):912–942MathSciNetzbMATHCrossRefGoogle Scholar
  211. 211.
    Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscipl Optim 26(6):369–395MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Sundaresan S, Ishii K, Houser DR (1995) A robust optimization procedure with variations on design variables and constraints. Eng Optim A 24(2):101–117CrossRefGoogle Scholar
  213. 213.
    Renaud J (1997) Automatic differentiation in robust optimization. AIAA J 35(6):1072–1079zbMATHCrossRefGoogle Scholar
  214. 214.
    Messac A, Ismail-Yahaya A (2002) Multiobjective robust design using physical programming. Struct Multidiscipl Optim 23(5):357–371CrossRefGoogle Scholar
  215. 215.
    Rashad R, Zingg DW (2016) Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach. AIAA J 54(11):3321–3337CrossRefGoogle Scholar
  216. 216.
    Shukla PK, Deb K (2007) On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods. Eur J Oper Res 181(3):1630–1652zbMATHCrossRefGoogle Scholar
  217. 217.
    Tamiz M, Jones D, Romero C (1998) Goal programming for decision making: an overview of the current state-of-the-art. Eur J Oper Res 111(3):569–581zbMATHCrossRefGoogle Scholar
  218. 218.
    Chen W, Wiecek MM, Zhang J (1999) Quality utility—a compromise programming approach to robust design. J Mech Des 121(2):179–187CrossRefGoogle Scholar
  219. 219.
    Bowman VJ (1976) On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Multiple criteria decision making. Springer, Berlin, pp 76–86CrossRefGoogle Scholar
  220. 220.
    Dai Z, Scott MJ, Mourelatos ZP (2003) Robust design using preference aggregation methods. In: ASME 2003 international design engineering technical conferences and computers and information in engineering conference, pp 109–119Google Scholar
  221. 221.
    Laumanns M, Thiele L, Zitzler E (2006) An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur J Oper Res 169(3):932–942MathSciNetzbMATHCrossRefGoogle Scholar
  222. 222.
    Messac A (1996) Physical programming: effective optimization for computational design. AIAA J 34(1):149–158zbMATHCrossRefGoogle Scholar
  223. 223.
    Chen W, Sahai A, Messac A, Sundararaj GJ (2000) Exploration of the effectiveness of physical programming in robust design. J Mech Des 122(2):155–163CrossRefGoogle Scholar
  224. 224.
    Messac A, Sukam C, Melachrinoudis E (2001) Mathematical and pragmatic perspectives of physical programming. AIAA J 39(5):885–893CrossRefGoogle Scholar
  225. 225.
    Messac A, Mattson CA (2002) Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim Eng 3(4):431–450zbMATHCrossRefGoogle Scholar
  226. 226.
    Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657MathSciNetzbMATHCrossRefGoogle Scholar
  227. 227.
    Vahidinasab V, Jadid S (2010) Normal boundary intersection method for suppliers’ strategic bidding in electricity markets: an environmental/economic approach. Energy Convers Manag 51(6):1111–1119CrossRefGoogle Scholar
  228. 228.
    Lopes LGD, Brito T, Paiva AP, Peruchi R, Santana R, Balestrassi PP (2016) Robust parameter optimization based on multivariate normal boundary intersection. Comput Ind Eng 93:55–66CrossRefGoogle Scholar
  229. 229.
    Das I, Dennis J (1999) An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: Short paper proceedings of the third world congress of structural and multidisciplinary optimization, pp 411-413Google Scholar
  230. 230.
    Brito TG, Paiva AP, Ferreira JR, Gomes JHF, Balestrassi PP (2014) A normal boundary intersection approach to multiresponse robust optimization of the surface roughness in end milling process with combined arrays. Precis Eng 38(3):628–638CrossRefGoogle Scholar
  231. 231.
    Köksoy O (2006) Multiresponse robust design: mean square error (MSE) criterion. Appl Math Comput 175(2):1716–1729MathSciNetzbMATHGoogle Scholar
  232. 232.
    Li J, Gao Z, Huang J, Zhao K (2013) Robust design of NLF airfoils. Chin J Aeronaut 26(2):309–318CrossRefGoogle Scholar
  233. 233.
    Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3(3):233–260zbMATHCrossRefGoogle Scholar
  234. 234.
    Kenway GK, Martins JR (2016) Multipoint aerodynamic shape optimization investigations of the common research model wing. AIAA J 54:113–128CrossRefGoogle Scholar
  235. 235.
    Lyu Z, Kenway GKW, Martins JRRA (2015) Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA J 53(4):968–985CrossRefGoogle Scholar
  236. 236.
    Papadimitriou DI, Giannakoglou KC (2008) Aerodynamic shape optimization using first and second order adjoint and direct approaches. Arch Comput Methods Eng 15(4):447–488MathSciNetzbMATHCrossRefGoogle Scholar
  237. 237.
    Peter JEV, Dwight RP (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput Fluids 39(3):373–391MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Pisaroni M, Nobile F, Leyland P (2017) A multilevel monte carlo evolutionary algorithm for robust aerodynamic shape design. In: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference, vol EPFL-CONF-229403, p 3329Google Scholar
  239. 239.
    Ong YS, Nair PB, Lum KY (2006) Max–min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans Evol Comput 10(4):392–404CrossRefGoogle Scholar
  240. 240.
    Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: International symposium on MICRO machine and human science, pp 39–43Google Scholar
  241. 241.
    Hassan R, Crossley W (2007) Approach to discrete optimization under uncertainty: the population-based sampling genetic algorithm. AIAA J 45(11):2799–2809CrossRefGoogle Scholar
  242. 242.
    Pulido GT, Coello CAC (2004) Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. Lect Notes Comput Sci 3102:225–237CrossRefGoogle Scholar
  243. 243.
    Ratnaweera A, Halgamuge S, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255CrossRefGoogle Scholar
  244. 244.
    Juneja M, Nagar SK (2017) Particle swarm optimization algorithm and its parameters: a review. In: International conference on control, computing, communication and materials, pp 1–5Google Scholar
  245. 245.
    Coello CAC (2015) Multi-objective evolutionary algorithms in real-world applications: some recent results and current challenges. Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Springer, Berlin, pp 3–18Google Scholar
  246. 246.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  247. 247.
    Coello Coello CA (2006) Twenty years of evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36MathSciNetCrossRefGoogle Scholar
  248. 248.
    Lian Y, Oyama A, Liou MS (2010) Progress in design optimization using evolutionary algorithms for aerodynamic problems. Prog Aerosp Sci 46(5–6):199–223CrossRefGoogle Scholar
  249. 249.
    Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9(1):3–12MathSciNetCrossRefGoogle Scholar
  250. 250.
    Lee DS, Gonzalez LF, Periaux J, Srinivas K (2008) Robust design optimisation using multi-objective evolutionary algorithms. Comput Fluids 37(5):565–583zbMATHCrossRefGoogle Scholar
  251. 251.
    Sastry K, Goldberg DE, Pelikan M (2001) Don’t evaluate, inherit. In: Conference on genetic and evolutionary computation, pp 551–558Google Scholar
  252. 252.
    Ducheyne E, Baets BD, Wulf RD (2003) Is fitness inheritance useful for real-world applications? In: Second international conference evolutionary multi-criterion optimization, EMO 2003, Faro, Portugal, April 8–11, 2003, Proceedings, pp 31–42Google Scholar
  253. 253.
    Scarth C, Sartor PN, Cooper JE, Weaver PM, Silva GH (2017) Robust and reliability-based aeroelastic design of composite plate wings. AIAA J 55(10):3539–3552CrossRefGoogle Scholar
  254. 254.
    Zhao K, Z-h Gao, J-t Huang (2014) Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method. Appl Math Mech 35(2):191–202MathSciNetCrossRefGoogle Scholar
  255. 255.
    Palar PS, Tsuchiya T, Parks G (2013) Decomposition-based evolutionary aerodynamic robust optimization with multi-fidelity point collocation non-intrusive polynomial chaos. In: AIAA non-deterministic approaches conference, 2013, pp 200–211Google Scholar
  256. 256.
    Song W (2009) Multiobjective memetic algorithm and its application in robust airfoil shape optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  257. 257.
    Lee D-S, Periaux J, Onate E, Gonzalez LF, Qin N (2011) Active transonic aerofoil design optimization using robust multiobjective evolutionary algorithms. J Aircr 48(3):1084CrossRefGoogle Scholar
  258. 258.
    Jeong S, Chiba K, Obayashi S (2005) Data mining for aerodynamic design space. JACIC 2(11):452–469CrossRefGoogle Scholar
  259. 259.
    Obayashi S, Sasaki D (2003) Visualization and data mining of Pareto solutions using self-organizing map. In: EMO. Springer, pp 796–809Google Scholar
  260. 260.
    Oyama A, Nonomura T, Fujii K (2010) Data mining of Pareto-optimal transonic airfoil shapes using proper orthogonal decomposition. J Aircr 47(5):1756–1762CrossRefGoogle Scholar
  261. 261.
    Chiba K, Obayashi S (2007) Data mining for multidisciplinary design space of regional-jet wing. J Aerosp Comput Inf Commun 4(11):1019–1036CrossRefGoogle Scholar
  262. 262.
    Cleveland WS, Schmieg GM (1985) The elements of graphing data. Am J Phys 55(397):767Google Scholar
  263. 263.
    Geoffrion AM, Dyer JS, Feinberg A (1972) An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Manag Sci 19(4-part-1):357–368zbMATHCrossRefGoogle Scholar
  264. 264.
    Cios KJ, Pedrycz W, Swiniarski RW (1998) Rough sets. Data mining methods for knowledge discovery. Springer, Berlin, pp 27–71zbMATHCrossRefGoogle Scholar
  265. 265.
    Shimoyama K, Lim JN, Jeong S, Obayashi S, Koishi M (2009) Practical implementation of robust design assisted by response surface approximation and visual data-mining. J Mech Des 131(6):061007–061011zbMATHCrossRefGoogle Scholar
  266. 266.
    Han ZH, Görtz S, Zimmermann R (2013) Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp Sci Technol 25(1):177–189CrossRefGoogle Scholar
  267. 267.
    Iuliano E (2017) Global optimization of benchmark aerodynamic cases using physics-based surrogate models. Aerosp Sci Technol 67:273–286CrossRefGoogle Scholar
  268. 268.
    Drela M (1998) Pros and cons of airfoil optimization. In: Caughey DA, Hafez MM (eds) Frontiers of computational fluid dynamics. World Scientific, Singapore, pp 363–381zbMATHGoogle Scholar
  269. 269.
    Horstmann K (2006) TELFONA, contribution to laminar wing development for future transport aircraft. Aeronautical Days, Vienna, 19th–21st JuneGoogle Scholar
  270. 270.
    Campbell RL, Campbell ML, Streit T (2011) Progress toward efficient laminar flow analysis and design. In: 29th AIAA applied aerodynamics conference, p 3527Google Scholar
  271. 271.
    Minisci E, Vasile M, Campobasso MS (2012) Robust aerodynamic design of variable speed wind turbine rotors. In: ASME turbo expo, pp 929–942Google Scholar
  272. 272.
    Jun S, Yee K, Lee J, Lee D-H (2011) Robust design optimization of unmanned aerial vehicle coaxial rotor considering operational uncertainty. J Aircr 48(2):353–367CrossRefGoogle Scholar
  273. 273.
    Keane AJ (2009) Comparison of several optimization strategies for robust turbine blade design. J Propul Power 25(5):1092CrossRefGoogle Scholar
  274. 274.
    Li M, Azarm S, Boyars A (2006) A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization. J Mech Des 128(4):874–883CrossRefGoogle Scholar
  275. 275.
    Parashar S, Pediroda V, Poloni C (2008) Self organizing maps (SOM) for design selection in robust multi-objective design of aerofoil. In: 46th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, p 914Google Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.School of AeronauticsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.School of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations